Center for Experimental Nuclear Physics and Astrophysics (CENPA) University of Washington

Beam Overview and Updates

Anna Soter and Peter Kammel

- Status
- Tasks
 - G4BL
 - Al and machine learning
 - Major beam design
- Plans

References

٠

- Paul Fisher <u>DocDB 241-v1</u>
- Anna & Peter: DocDB 212-v1
- Peter: Coll meeting 2023 talk

Beam: piE5 @ PSI - World's Brightest Stopped Pion Beam

- Progress 2023
 - PIONEER requirements and test beam 2022 results
 - Rate: 300k π/s stopped in ATAR: ok at 65 MeV/c
 - Momentum bite: ∆p/p <2%: marginal
 - Spot size: <2 cm FWHM: not achieved
 - μ,e less than 10% $\pi:$ needs second focus extension
 - improved understanding and optimization
 - non-linear effects due to large phase space
 - beamline model with G4BL
 - novel promising machine learning approach (Adelmann et al)
- Plans 2024
 - machine learning
 - extend machine learning to full beam line
 - optimization of beam properties
 - prepare experimental verification
 - beam design
 - 2nd focus extension
 - better focus
 - retune for smaller $\Delta p/p < 2\%$

From my PAC at PSI talk in Feb. 2024

Components

• Summary

PhysicsConcept

P. Fischer, Semester Project ETH

Kinematics

G4BL Model shows Strong Non-linear Effects

Peter - Urs

- Not directly comparable, but non-linear behavior confirmed
- Compare magnet current/field conversion

More work

- Understand main non-linear matrix elements
- Rough beam tuning, currently it does not represent measured reality

Paul's AI/ML Work

Advisors: Andy A. and Sebastian H.

- 1. Design variables $x \subset R^{18}$
 - 18 currents of the quadrupole and sextupole magnets
- 2. Final phase space $\mu_f \subset R^6$
- Function of initial phase space and design variables
- 3. Optimize for m objectives functions $f(\mu_i, x, z)$
- 4. Use G4BL as "virtual" reality

 $\mu_f = \mu_{G4BL}$ $f = f_{G4BL}$

5. Fast surrogate model $\mu_{surrogate} \sim \mu_{G4BL}$ $\mu_{surrogate} \sim f_{G4BL}$

Results - Proof of Principle

- Analyzed upstream 6 magnets
- Varied current ±20 A for training set in G4BL
- Optimized surrogate model for 2-D pictures

AI/ML Strategy

- Method Developments
 - Unified surrogate model for simultaneous 5-6d phase space description
 - Include (selected) virtual plane in surrogate model definition, slits.
- Full Beamline
 - Extend the surrogate model to the full beam line. Particles making it to ATAR will exhibit very distinct features compared to initial flux.
 - Does Urs confirm Peter's non-linear effects? partially done.
- Optimization Method
 - Fit to optimize objective functions
 - rate on ATAR, σ_x , σ_y , σ_p

- Anna: What does that have to do with reality? Answer: 2 steps
 - Step 1:
 - Use G4BL as "virtual" reality to develop and establish method
 - Importantly, study required input data set for robust prediction
 - Step 2:
 - Replace input-output relation with measured phase space (chamber tracker at ExB location)
 - Re-optimize based on data

- AI/ML Tuning strategy
 - Full BL or DBL (downstream) only (Black box approach) DBL only probably not enough
 - Step-by-Step optimization ?

Major Design Upgrades

- Two separate foci required so that background is rejected outside of detector
 - 1st focus separates particles after ExB velocity filter and reject µ and e on collimator
 - 2nd focus is a double x/y focus aimed at ATAR
 - First attempt with singlet triplet promising but using only linear beam dynamics
 - Large custom final quad?
- Smaller momentum bite
 - Retune upstream beam line to let dispersion grow
- Degrader in dispersive section?
 - Requires dispersive double focus

 π^+

People and Timeline

People

- Andy Adelmann
 - No progress this year, needs student
 - Kolja interested candidate
- David Tarazona
 - 1st rate beam physicist
 - Currently work with Lawrence
 - Applied for Cornell AI in Science Postdoctoral Fellowship
 - Plans to model pE5 with BMAD
- Kolja also analyzing first beam test
- Remark concerning simulation
 - Prediction won't be ready on CDR timescale
 - Include beam as parametrized input
- Hope that activity can resume in fall
- Other help more than welcome

• Timeline

Fall 2026	Beam test
Fall 2025	 AI/ML studies with G4BL finalized to justify πE5 2026 beam request. Extend the surrogate model to the full beam line running Optimization demonstrated Measurement strategy developed At the same time we should have tracker system available.
Fall 2025	Beam design with extension ready To justify extension measurements
CDR	What do we need for that?

