Motivations and timeline for LXe prototype

Toshiyuki Iwamoto PIONEER Collaboration Meeting @ University of Washington June 20 2024

Motivations for large prototype test

Performance evaluation at a large scale

- Energy resolution at 70 MeV e⁺ beam at PSI •
 - MEG/MEG II measures 52.8 MeV γ , energy resolution is evaluated • by 55, 83 MeV γ from π^0 decay
- Shower leakages (resolution versus angle).
 - Large prototype is mounted on a caster base
- Test of thin entrance window
- Photonuclear effect and tail component evaluation
- Operation experience for the detector
 - cabling, material for PMT supports, purity monitor •
 - purification system •
 - calibration
- Further improvements for the final detector design

- Energy resolution of 1.2% at 55MeV in the large prototype test, ~2% in MEG II •
- Geometrical difference, scintillation characteristics, •
- Intrinsic resolution $\Delta E = (E_{even} E_{odd})/(E_{even} + E_{odd})$ shows a good resolution •

 $\sigma_{absolute} = \sigma_{intrinsic} + \sigma_{coherent}$, $\sigma_{coherent}$: noise, shower development, reflection and scattering of the scintillation light

Photonuclear effect

Neutron Escape

- In Xe: Bumps at E – (n × 8.4 MeV)
- Good understanding necessary
- Can we use the MEG II LXe calorimeter to measure this?

Lukas(20230614) https://pioneer.npl.washington.edu/cgi-bin/private/ShowDocument?docid=176

- one, and the updated results will come soon

83 MeV peak in 2022 CEX run

Lukas(20230614) https://pioneer.npl.washington.edu/cgi-bin/private/ShowDocument?docid=176

- Metal honeycomb panel used in MEG prototype (Steel)
- Recent KEK R&D for beam • vacuum window
 - Ti-6AL-4V 3d-printed window •
 - 6wt% AI (X0=8.9cm), 4wt% Vanadium (X0=2.6cm) are added to Ti (X0=3.6cm)
 - 4.43 g/cm3 •
 - 0.2mm ground down from 0.5mm •
 - AI 3d-printed window ~0.2mm •
 - Tolerable up to 0.3MPa •
- Window production for LP with Ti64 with the thinnest thickness
 - 0.15-0.2mm, pressure, leak test in 2024 •

Thin window

0.5mm 64Ti window

0.15mm Al Rupture disk

Design of the large prototype

Xenon procurement

- BNL has 20 liter
- ICEPP + KEK will purchase 60 liter
- TRIUMF will purchase 40 liter
- In total ~120 liter should be available •
 - We will continue the effort to get more xenon
- Chinese company (WISCO)
 - •

First trial by UTokyo to buy 20 liter from WISCO through PSI purchase department underway

Prototype beamtest with CEX reaction at PiE5 in 2004

Timeline

- Installation to PiE5
- Connection and evacuation 2 weeks
- Precooling/Liquefaction 1 week
- Beam tuning, hydrogen target 1 week
- Calibration/trigger setup/ • DAQ 1 month
- Once the detector is ready, 2 month would be sufficient for the beam test
- We need to evaluate • how long it will take to prepare the detector outside the are including the purification

PROTOTYPE TIMELINE

Xenon	months	4	5	6	7	8	
Xenon							
	Procurement						
Simulation	G4 optical simulations						
DAQ	DAQ Implementation						
Mechanical support	Design Inner assembly (Incl light calibration system)						
	Fabrication of inner assembly						
Electronics	PMT tests						
	Design PCB / feedthroughs						
	Production, Assembly, Cabling						
@ TRIUMF Detector assembly and test	Purity monitor test in LoLX						
	Assembly of the detector & construction of black box						
	tests at TRIUMF with light source [in black box]						
	Shipment to PSI						
	3D printing						
@ KEK Windows production	Grinding						
	Flange						
	Vacuum test						
	Pressure test						
	Cover						
	Shipment to PSI						
@ PSI Full assembly	Cryostat preparation/gas system test/ procurement of HP tanks and storage vessels						
	Platform design						
	Platform construction						
	Assembly in space near PIM1						
	evacuation/ (slow baking?)						
	LXe filling/purification						
	Detector test with cosmic and calibration sources						

Freeze prototype design (August 2024)

personnel at PSI

11	12

Calibration study

- Photo sensor calibration
 - Emma will cover the topic
- Energy calibration
 - 17.6 MeV γ from CW Li, 55&83 MeV γ • from π^0 decay
 - Dedicated targets must be introduced •
- Any uniform monochromatic • positron sources for the calibration of the LXe detector?
 - Methods in MEG II are based on γ •
 - Michel decay (Edge shape of 53MeV • isotropically)
 - Direct positron beam (mainly downstream side) or Mott scattering
 - γ (CW/ π^0) with active converter

Energy calibration

12

pTC-DS only rate estimate: O(KHz) at 10⁸

Mott monochromatic energy spectrum

- Data in 2012 and in 2013 •
- Positron beam momentum of p ~ 52MeV/c •
- Scattered by MEG target (CH₂) •
- spectrometer energy resolution ~ 300keV •
- Spread from the beam ~ 400-500keV •

Mott in MEG

b) Run 2012 vs. 2013

Mott scattering for PIONEER

- Event rate @ 70MeV/c should be sufficient (1kHz@53MeV/c at MEG)
- Scattered momentum on silicon larger than that on carbon
- Strong angle dependence
 - Events with forward direction will be dominant
- Detailed estimates with MC necessary

(1kHz@53MeV/c at MEG) that on carbon

Thin MPPC can be installed in the inner sphere?

- Can we put some photosensors on the inner target sphere?
- Wataru contacted Hamamatsu for this
 - MPPC chip: 200µm
 - Solder bump: 150µm
 - Stiffener: $< 270 \mu m$
- Radius of 15cm
 - Area : 2500 cm2
 - 6000 MPPCs with 6x6mm2 ~0.2M USD
- Prototype samples will be provided by Hamamatsu
 - Those samples will be tested in the liquid xenon

XMASS PMTs

- R10789 still installed in the detector (~600)
 - 2 inch, hex shape photo-cathode (58.4mm × 126.6mm) •
 - QE: 28–39% •
 - need human resources and budgets to remove them from • the detector
 - For the construction, it costed 0.13MUSD (20MJPY) •
 - The XMASS people will investigate it more if we are • interested in using them
 - mBq/PMT amount of • radioactivity for them is a problem, but is not for us.

Prices of photo sensors

- S13371-6050/75CQ-02 (MEG II MPPC)
 - 100 USD (10,000-13,000pcs), updated in 2024 June •
 - 12x12mm2 •
- R12699-406-M4 (Flatpanel PMT)
 - 3000 USD •
 - 48.5x48.5mm2 ~ 183 USD/12x12mm2
- R9869 (MEG PMT)
 - 2000 USD unfortunately, it is discontinued.
 - φ46mm ~ 181 USD/12x12mm2 •

Summary

- We can learn a lot of things in the prototype test
 - Energy resolution •
 - Photo nuclear interaction •
 - Thin window test •
 - **Operation experience** •
- Calibration methods •
 - Cockcroft Walton + Li target (17.6MeV γ), Charge Exchange reaction (55, 83MeV γ), • Monochromatic positron beam, Mott scattering, γ conversion into e+e-
- Possible improvements
 - Thin MPPC installation into the inner sphere
- Cost reduction •
 - Investigation of the photo sensors •

Prototype design will be finalized soon, and we aim at beam test in 2025

Scintillation

Phys. Rev. B 27 (1983) 9

10

Status for large prototype test

- Available •
 - Cryostat
 - PMTs: 1/3 PMT tested at RT (109 R9288 PMTs) •
 - Power supply: 206 working positive channels •
 - Pulse tube refrigerator & rotary valve •
 - Compressor for the refrigerator (at PSI) •
 - Gaseous purification panel •
 - LN2 pipes •
- To be prepared
 - 10x5 WFD channels available (probably ~1/2 of the total • channels we need)
 - Thin window •
 - PMT support structure, cables, feedthrough •
 - Xenon storage tank
 - Stage to transport a set of the measurement setup into the beam line w/o disconnecting pipes

Photo-sensor calibration

Variance vs Charge mean w/ different LED intensities

Ratio of data/MC for a PMT

Nphe_{MC} vs Nphe_{Data}, PM4759, OUTER, PM_{MC}4759

Purification

Gaseous xenon purification

- 1 month to reach a plateau
- New getter and new pump to improve the purification speed

Outer

(Kingbright KA-3021QBS-D)

(Toyoda Gosei E1L493B1A02)

α sources

²⁴¹Am foil to a gold-plated tungsten wire $(100 \mu m \phi)$ thermo-compression method ~100Bq/source

- •
- •
- •

PMT QE/MPPC PDE including LXe light yield extracted from $^{241}Am \alpha$ sources MPPC PDE decreases under muon beam

Better to install α sources in the PIONEER. The problem might be the source production (Sorad Ltd. which produced the MEG α sources does not exist anymore)

Cockcroft Walton proton accelerator + Li target

- Energy scale, resolution can be directly extracted from 70 MeV peak and from 53MeV Michel edge in PIONEER (robust calibration possible)
- Sensor calibration, LXe light yield monitoring by LED, α crucial
- Other γ calibration sources (AmBe 4.4MeV, Ni 9MeV, Li 17.6MeV, π^0 55MeV, Cosmics) are optional
- Positron incident position can be measured by trackers
- Each photo sensor time offset might be available from the LGAD time as a reference

Tail from Mott scattering?

Momentum Spectrum

spread of $\sigma=0.2\,{\rm MeV/c}$ on the incoming momentum of the beam is assumed.

