Energy/Time Resolution for an Array of LYSO Crystals

Omar Beesley

LYSO Testbeam Goals

- 1. Energy resolution measurement scan energies around 70 MeV
- 2. Muon tomography determine longitudinal uniformity of LYSO crystals using a high energy muon beam
- 3. Time resolution measurement determine crystal-crystal timing differences as a function of hit energy
- 4. Fine position scans across front face of LYSO array determine losses at the boundaries of the crystals
- 5. Position resolution measurements characterize ability of crystals to reconstruct hit position

Detector setup at PSI

Detectors:

- 1 Positron beam exit
- 2 Veto detector
- ③ t0 detector
- (4) Beam hodoscope
- 5 LYSO array
- 6 Nal detectors
- 7 XY-table

Time Resolution Results

Nominal energy resolution configuration

- Veto is centered on crystal 4 (outlined in red) so that only particles entering the array through crystal 4 can trigger the DAQ
- Crystal 4 used as the primary crystal due to a coupling issue with crystal 5
- Any energy deposit in a Nal detector results in the event being vetoed
- Non-linearity problem with 3 of the PMTs

FACING DOWNSTREAM

Hamamatsu R1450 and Non-Linearity Problems

energy dependent

Energy is not

Crystal Calibrations and Timing Cuts

Before each data run at each energy, drive beam into the center of each LYSO xtal

Additional suppression of low energy signals in non-linear PMTs is made (~10%)

Only consider pulses with peak within gate [t-15,t+35] of seed time t

Energy resolution results

~1.8% energy resolution at 70 MeV

- Nal crystals used as vetos
- Momentum bite of beam (dp/p) < 0.6% Energy resolution vs. energy fit:

 $\delta E/E = a/VE + b/E + c$ Noise Constant

Only noise term and constant term are non-zero in fit:

- Electronics noise (due to running the PMTs at low HV)
- Leakage from the array not picked up by Nal veto detectors
- Miscalibrations

Muon Tomography Results

Track light output across 6 positions along the long side of the crystals

Energy Resolution of a LYSO Array at 17.6 MeV

 $\text{Li-7} + p \rightarrow \text{Be-8} + \gamma, E_{\gamma} = 17.6 \text{MeV}$

- 2.62% energy resolution at 17.6 MeV comparable to LXe detector
- Exact p-Li reaction could be used as a calibration in PIONEER – used by MEG II (also get ~2.6%)

CENPA Beam Test Shows Significant Improvement

PMT bases were corrected to a tapered design

• Voltages were increased by about 300V on each PMT

