Technical Coordination, and Towards a CDR

Bruce Schumm

June 21 2024

PIONEER Collaboration Meeting

CENPA/UW

Next Collaboration Meeting

January 7-9, 2025

TRIUMF

Vancouver, BC, Canada

Host: Chloe Malbrunot

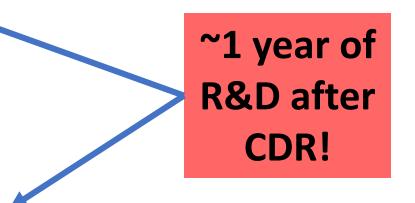

What Does PIONEER Need to Do

In the broadest possible terms

- Convince agencies to provide seed funding
- Do R&D with this funding to develop and optimize these approaches
- Identify critical sector tests to establish performance
- Convince agencies to provide construction funding
- Fabricate, assemble and deploy the detector and beamline

Assume that operation/analysis funding will accompany construction funding

→ CDR/TDR process


CDR/TDR Timeline

Conceptual Design Report (soon? Q1 2025?)

- Physics case and experimental strategy
- R&D roadmap, including sector tests
- To inspire seed funding from regions

Technical Design Report (T minus 2-3 years? Q3-Q1 2026-27)

- Engineering design
- No or limited alternatives
- To justify full funding of PIONEER 1.0

Timeline and budget: 2023 version; coarse view

	2024	2025	2026	2027	2028	2029	2	030	2031	2032	
				PSI Shutdown /	Upgade						
	LXe 100 L		Active Tgt 1	Test			Run-1 Ru	n-2	Run-3	Run-4	
R&D)	R&D	Large Prototype	Major construc	tion period	Install		Phy	S	<mark>Phy</mark> s	<mark>Phy</mark> s

Funding											
Profile	Operating gran	ts and small su	oplements	Large purchases:		~~	1 ŚM 🗕				
	Special R&D av	vard for prototy	pes	LXe procurement					-		
	Project funds			Photosensors and electronics							
ntegral of green				Calibration system							
equals Project			ASIC dev	All electronics	LXe and tanks						
Request	R&D: Activ	e Target,	2nd LXe test		Final install eng	g (OPERAT	ION SU	PPORT (OF GROUPS	
	LXe Prototype	and Electronics	Elect / DAQ								

Important dates impacting timeline

- July 2024: Will learn about UBC prelim; will learn about UCSC/Cornell R&D grant; will learn about Cornell base grant (encouraging)
- Early fall 2024: CENPA base grant submission. This is significant because g-2 will not "drive" the support of the Muon Group within the grant. The KY group will submit to NSF.
- Dec 2024: CFI grant goes in as a full document if step 1 is successful.
- Jan 2025: PSI report must be clear, with CDR level descriptions of how the experiment will perform and hardware choices made
- July 2025: UCSC base grant submission

What is CDR all about?

- Establish compelling Physics case
 - ev_e
 - $\pi^0 e v_e$
 - aev_e
 - $Iv_I\gamma$
 - ... ?
- Lay out detection strategy, including alternatives
- Establish plausibility, with clearly identified risks
- Establish R&D path to address risks
- Lay out performance demonstration milestones and timelines
- Provide cost estimates

What is the Purpose of the CDR

- No one has asked us for this document
- PSI has asked for a Progress Report in January, but this would be much deeper and more comprehensive
- The reasons for this are to
 - Provide a document we can use to inspire funding and draw in new collaborators
 - The exercise will force us to step back and identify risks, to focus our R&D, and identify and mend gaps in our thinking

Given the timeline and status of our effort, I believe this is a very important exercise for us

Straw CDR Outline

Introduction

- Statement of Physics opportunities
 - Rare pion spectrometer
 - Universal technology (5D tracking)
- Status of prior experimentation
- Summary of main needs and outline of strategies
 - PSI / beam
 - Detector
- Timelines
- Content and structure of the collaboration

Basic Design Concept

- Beam
- ATAR
- Calo
 - o LYSO
 - o LXe
- DTAR/Tracker
- Trigger strategies
- DAQ

Physics Reach

- Sensitivity studies
 - $\circ ev_e$
 - $\circ \pi^0 e v_e$
 - \circ aev_e
 - \circ $|v_1\gamma$

Identified Risks

- Summary of identified risks
- Associated R&D plan
- Plans and goals for PIONEER 0.5

Costs

- R&D towards TDR
- Envelope for full experiment (?)
 - Engineering studies
 - Construction
 - Collaboration costs (travel etc.)
 - Operation costs
 - Personnel costs (students etc.)

Summary and Outlook

Personal Slide: Technical Coordinator Role

Can be significantly more active now. Possibilities include

- Detector/Analysis "Whip"
 - Push collaboration towards consensus paths when possible
 - Oversee their implementation
- Village Skeptic
 - Step back and anticipate questions from agencies looking for an excuse not to fund us
 - Invite and curate others' skepticism
 - "Show me" gadfly (e.g. have we thought hard enough about reducing the tail fraction?)
- Regular meetings of Technical Board (how often?)
 - Tentatively: Hertzog, Schumm, Mihara, Mazza, Gibbons, Buat, Kammel, Bryman, Soter
- Individual meetings with sub-area leaders (depending on need)
 - Help identify and strategize about risks
 - Identify areas where support is needed
 - Oversee work towards CDR

Other Thoughts

- What can we work towards consensus on now?
 - DAQ protocols (Apollo, PCE vs. Ethernet, ...)
 - Simulation baseline (maybe with alternatives for Calo, beam)
 - ???
- ATAR region getting very busy
 - Could use engineering drawing of 2-3 alternatives
 - Will almost certainly be needed for CDR
- Need to discuss well-defined simulation goals for the CDR
 - Feedback to detector groups best if by end of summer

Backup

Detailed Notional timeline & funding profile: 2023 version

2022 2023		2024		2	025			20	26			202	.7			2028			202	9			203	0		2	203	1		20	32			2033	2034
Q2 Q3 Q4 Q1 Q2 Q3 Q	4 Q1	Q2 Q3 (Q4 Q	1 Q2	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1 (Q2 (Q3 (24 C	Q1 (Q2 Q3	3 Q4	Q1	Q2 (Q3 (Q4 C	Q1 (Q2 C	Q	4 C	Q1 Q	2 0	23 Q4	4 C	Q1 Q2	Q3	Q4 0	10	Q2 Q3 Q4	Q1 Q2 Q3
																																			Т
l Experimental Approval			THIS	REPR	ESEN	ITS 1	THE	PHAS	SE I I	PRO	GRA	MC)F LE	рто	NF	LAVO	RUN	IVER	SALIT	Y TI	ESTS	5.							P	'i Beta	Des	sign			
 Snowmass present 																																			
 P5 pres 																																			
	• (D0 nomi																																	
			•	CD1	/ CI	DR co	omp	letec	k																										
											PSI S	Shut	dow	n / l	Jpga	ade																			
									♦ C	D2/3	3 no	mina	al &	TDR																					
																					•	CD	04 no	omin	al								F	Request pi	beta suppor
Pion Beam Test #																																			
: ATAR, Calo, Electronics	s, Trac	ker																																	
	LYS	O Test Be	eam a	at PSI																															
		l	Xe 1	00 L	Prot	otyp	e Te	st Be	eam	at P	SI																								
							ATA	AR pi	on s	top	oing	test																							
											Deve	elop	LXe	Infra	astu	ıre, in	cludi	ing p	ost N	IEG															
											ATA	R + I	Parti	al Ca	alo S	Syster	ns Te	est												Tar	get	and Tr	igg	er upgrad	e tests
												(Calo	Cryo	o Co	nstru	ctior	۱																	
																		Inst	allati	on															
																			F	lun-	1/0	Com	miss	ionir	ng	R	esu	lt 1 o	n L	FU an	d ex	otics			
																						R	Run-2	2 Ful	l Ph	ysics	s Ru	ın							
																										R	un-:	3 Full	l Ph	nysics	Run	Resul	t 2	on LFU an	d exotics
																														Rui	n-4 F	Full Ph	ysic	cs Run	Final result
																																			_
	Ope	erating gi	ants	and	smal	l sup	ple	ment	ts		Larg	e pu	ircha	ses:																					
	Spe	cial R&D	awa	rd foi	r pro	toty	pes				LXe	proc	urer	nent	t																				
	Pro	ject fund	s								Phot	tose	nsor	s an	d el	ectro	nics																		
							ASI	C de	v		Calik	orati	on s	yste	m																				
							ATA	AR 0.	5		All e	lect	ronio	cs				LXe	and	tank	s														
		R&D for	ATA	R and	I		2nc	l LXe	test	t								Fina	al inst	all e	eng		C	PER	ATI	ON S	SUP	PORT	0	F GRO	JPS				
	LXe	Prototyp	e an	d Ele	ctro	nics	Ele	ct / D	DAQ																										

U.S. and International approximate Scope division

- Active Target development and readout electronics (US)
- Calorimeter digital electronics (US)
- Trigger and DAQ (UK groups?)
- Calibration system for calorimeter (Italy?)
- Tracker system (US + TBD)
- Custom beamline elements (Switzerland)
- Calorimeter procurement (Canada, Japan, Switzerland, China?)
- Calorimeter photosensors, cabling, and power supplies (TBD)
- Beamline detectors and LH₂ charge-exchange calibration infrastructure (PSI, Italy)
- Local installation support at PSI
- Data storage at PSI