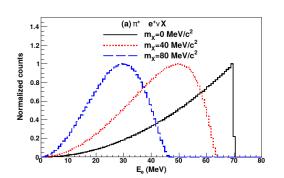
ALP Physics and the Associated Generator

Wolfgang Altmannshofer waltmann@ucsc.edu

PIONEER Collaboration Meeting CENPA, Jun 19 - 22, 2024

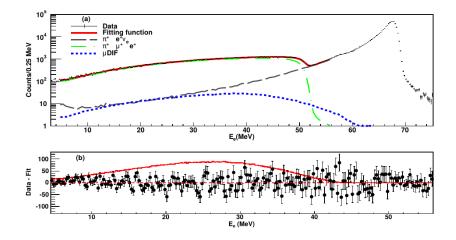
"Exotics" at PIONEER

- ▶ 2-body decays: $\pi \rightarrow eN$, $\pi \rightarrow \mu N$
- ▶ *N* is a neutral spin 1/2 fermion, a.k.a. sterile neutrino
- ► In the relevant region of parameter space, N lifetime is macroscopic ⇒ decays outside the detector


"Exotics" at PIONEER

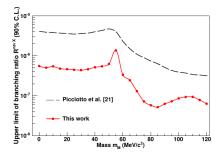
- ▶ 2-body decays: $\pi \rightarrow eN$, $\pi \rightarrow \mu N$
- ▶ *N* is a neutral spin 1/2 fermion, a.k.a. sterile neutrino
- ► In the relevant region of parameter space, N lifetime is macroscopic ⇒ decays outside the detector

- ► 3-body decays: $\pi \rightarrow e\nu X$, $\pi \rightarrow \mu\nu X$
- ► X could be a scalar, axion like particle, vector, ...
- ► possible decay modes: $X \rightarrow e^+e^-, X \rightarrow \gamma\gamma, X \rightarrow \text{invisible (or } X \text{ is stable)}$
- X decay could be prompt or displaced (interesting range mm - cm ?)

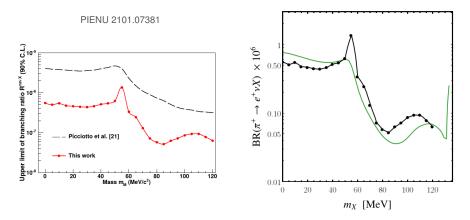

Search for $\pi \to \ell \nu X$ at PIENU

PIENU 2101 07381

- Positron energy in the 3-body decay is not fixed.
- ► E_e follows a characteristic distribution depending on the mass of X and the way X couples to the Standard Model.
- The chosen model for X was introduced in Batell et al. 1709.07001; it gives the same energy spectrum as the "weak violating ALP" from WA, Dror, Gori 2209.00665.


Search for $\pi \to \ell \nu X$ at PIENU

PIENU 2101.07381


Result from PIENU and Our Recast

PIENU 2101.07381

Result from PIENU and Our Recast

WA, Giffin, Gori, Jackson, Luong, Seo work in progress

 Refitting the published data points with the signal and background components we can reasonably reproduce the official PIENU result.

More Models

► 3-body decay $\pi \rightarrow e\nu X$ is fully characterized by a double differential decay distribution in the positron energy and the *X* energy.

$$rac{d\Gamma(\pi
ightarrow e
u X)}{dE_e dE_X}$$

- ► We have expressions for a long list of models:
 - scalar with couplings to electrons,
 - axion like particles coupled in various ways to electrons and neutrinos (from WA, Dror, Gori 2209.00665),
 - spin-1 particles with vector or axial vector couplings to electrons and neutrinos,
 - spin-1 particles with dipole couplings to electrons.

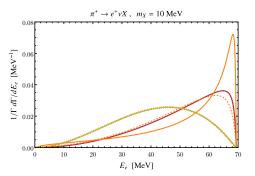
Some Examples

scalar

ALP

$$\frac{d\mathrm{BR}(\pi^+ \to \ell^+ \nu_\ell \ s)}{\mathrm{BR}(\pi^+ \to \ell^+ \nu_\ell)} = \frac{g_s^2}{4\pi^2} \frac{dE_\ell dE_s}{m_\pi^2} \\ \times \frac{1}{(1-x_\ell)^2} \left[\frac{x_{\ell\nu} x_{\ell s}}{x_\ell (x_{\ell s} - x_\ell)} + \frac{x_{\ell s} (3+x_s - 4x_{\ell s}) - x_s + x_\ell}{(x_{\ell s} - x_\ell)^2} \right] .$$
(5.7)

$$\frac{d\mathrm{BR}(\pi^+ \to \ell^+ \nu_\ell \ a)}{\mathrm{BR}(\pi^+ \to \ell^+ \nu_\ell)} = \frac{1}{4\pi^2} \frac{dE_\ell dE_a}{m_a^2} \\ \times \frac{1}{x_\ell (1 - x_\ell)^2} \left[g^2 \frac{x_{\ell a} x_a (x_{\ell a} - 1)}{(x_{\ell a} - x_\ell)^2} + g(\bar{g} - g_\nu) \frac{x_{\ell a} (x_{\ell \nu} - x_a) + x_a - x_\ell}{x_{\ell a} - x_\ell} \right. \\ \left. + (g - \bar{g} + g_\nu)^2 \frac{1}{4x_\ell} (x_{\ell a} (x_{\nu a} - x_\ell) - x_a + x_\ell) \right] . \tag{5.8}$$

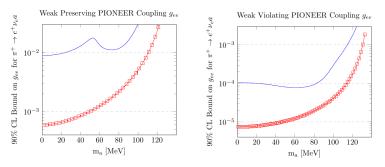

$$\frac{dBR(\pi^+ \to \ell^+\nu_\ell V)}{BR(\pi^+ \to \ell^+\nu_\ell)} = \frac{1}{2\pi^2} \frac{dE_\ell dE_V}{m_\pi^2} \frac{1}{x_\ell(1-x_\ell)^2} \Big[g_V^2 \Big(2 + \frac{x_{\ell V} - 2 + x_\ell}{x_{\nu V}} \\ - \frac{x_V(1-x_\ell)}{x_{\nu V}^2} + \frac{2(1-x_\ell)^2 + 2x_\ell x_V}{(x_{\ell V} - x_\ell)^2 + 2x_\ell x_V} - \frac{2(1-x_\ell) - x_{\nu V}}{x_{\ell V} - x_\ell} + \frac{2x_\ell + x_V}{(x_{\ell V} - x_\ell)^2} \Big) \\ + g_A^2 \Big(\frac{x_{\ell V} + 2 - 3x_\ell}{x_{\nu V}} - \frac{2(x_{\ell V} - 1 + x_{\nu V})}{x_V} - \frac{(1-x_\ell)x_{\nu V}}{x_{\nu V}^2} + \frac{2x_\ell}{x_{\ell V} - x_\ell} \Big(\frac{x_V}{x_{\nu V}} - \frac{x_V}{x_V} - \frac{x_V}{x_V} \Big) \\ - \frac{2(1-x_\ell)^2}{(x_{\ell V} - x_\ell)x_{\nu V}} + \frac{2 - x_{\nu V} + 6x_\ell}{x_{\ell V} - x_\ell} - \frac{(1-x_\ell)(x_V - 4x_\ell)}{(x_{\ell V} - x_\ell)^2} \Big) \\ - 2g_V g_A \Big(\frac{x_{\ell V} - x_\ell}{x_{\nu V}} - \frac{x_V(1-x_\ell)}{x_{\nu V}^2} - \frac{x_{\nu V} + 2x_\ell}{x_{\ell V} - x_\ell} + \frac{2x_\ell x_V}{(x_{\ell V} - x_\ell)x_{\nu V}} \\ + \frac{x_V(1+x_\ell) - 2x_\ell x_{\nu V}}{(x_{\ell V} - x_\ell)^2} \Big) \Big]. \quad (5.9)$$

vector

Wolfgang Altmannshofer (UCSC)

Positron Spectra

The positron energy spectrum depends on the model.


WA, Giffin, Gori, Jackson, Luong, Seo work in progress

- solid orange: vector
- dashed orange: axial-vector
- solid red: axion
- dotted red: weak violating axion
- yellow: vector with dipole interaction

- Can use these shapes and refit the PIENU data to obtain constraints on other models.
- Want to use some of those shapes to make sensitivity projections of PIONEER (ALPs probably the most popular nowadays).

ALP Interpretation

Ollie Jackson, senior thesis at UCSC

- blue: reinterpretation of PIENU result as constraint on different types of ALP couplings to electrons.
- ▶ red: sensitivity estimate for PIONEER (taking the E_e spectrum of $\pi \rightarrow e\nu$ from the whitepaper, adding statistical uncertainty and checking how much of an ALP signal can fit in.)

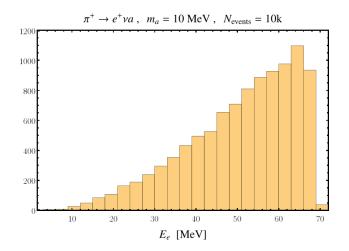
Event Generator

- ▶ Work has begun on an event generator of $\pi \rightarrow e\nu a$ (*a* = ALP)
- ► Option 1: directly integrated into PIONEER simulation infrastructure.
- ► Option 2: stand alone generator producing event files.
- ▶ Both options are pursued.

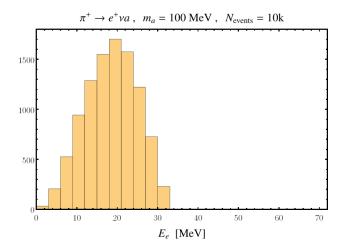
Event Generator

- ▶ Work has begun on an event generator of $\pi \rightarrow e\nu a$ (*a* = ALP)
- ► Option 1: directly integrated into PIONEER simulation infrastructure.
- Option 2: stand alone generator producing event files.
- ▶ Both options are pursued.
- ▶ for the moment, fix the model to a "standard" ALP that couples to electrons (and electron neutrinos)

$$\frac{\partial_{\mu} a}{f_{a}} \Big(\bar{\boldsymbol{e}} \gamma^{\mu} \gamma_{5} \boldsymbol{e} + \bar{\nu}_{\boldsymbol{e}} \gamma^{\mu} \boldsymbol{P}_{\boldsymbol{L}} \nu_{\boldsymbol{e}} \Big)$$


- ▶ Free parameters: ALP mass and ALP lifetime.
- ► Can keep the ALP invisible or let it decay into e^+e^- or $\gamma\gamma$.
- ► Should be straight forward to implement other models as well.

Example Output of the Stand-Alone Generator


```
<event>
211 - 1 0
        0 0 0.13957
                      0.13957
      -0.0031609 -0.00897826 0.00263702 0.00989017
                                                    0.000510999
      .0655151 0.00983869 -0.00534817 0.0664652 0.
    -0.0623542 -0.000860431 0.00271115 0.063215
                                                  0.01
-2.72392 -0.0375876 0.118435
11 1 -0.0531542 -0.00207181 0.00557985 0.0534889
                                                  0.000510999
-11 1 -0.00919996 0.00121138 -0.0028687 0.00972611
                                                    0.000510999
</event>
<event>
211 -1 0 0 0 0.13957
                      0.13957
-11 1 -0.00044688 0.000678534 -0.0134726 0.0135067
                                                    0.000510999
  1 0.00840347 -0.0464075 0.0480488 0.0673273
51 1 -0.00795659 0.045729 -0.0345762 0.0587364
                                                0.01
-0.910864 5.23501 -3.95826
11 1 -0.00273127 0.011965 -0.00409821 0.012949 0.000510999
-11 1 -0.00522532 0.033764 -0.030478 0.0457873 0.000510999
</event>
```

- For the moment my own made-up file structure produced by a mathematica code.
- ▶ Will switch to C++ and HepMC output format.

Distributions

Still preliminary; seems to work but needs cross checks.

Still preliminary; seems to work but needs cross checks.