14-Si Silicon

Silicon has three stable isotopes, but only two of them were investigated optically. Radioactive isotopes were not investigated. The listed radii are from muonic atoms and elastic electron scattering.

K X-ray measurements do not exist.

14.1.1 Optical measurements

14.1.1.1 Isotope shifts

Stable isotopes: stable isotope ²⁹Si not investigated. **Radioactive isotopes:** none Total number of papers: 3

λ [nm]	Ref.	Measured isotope shifts δv_{exp} [MHz]		
A		28	30	
250.69	HH62 ¹)	0 ± 0	347.8 ± 6.0	

¹) ten more lines in the UV region are given in [HH62]

14.1.1.2 Isotope positions

The sequence for the stable isotopes for the transition Si I, $3s^23p^2 {}^{3}P_1 - 3s^23p4s {}^{3}P_2$, wavelength λ **250.690 nm**, i.e. wavenumber $\sigma = 39877.97 \text{ cm}^{-1}$ is given in Fig. 1.

Fig. 1. Optical isotope shift observed in the line λ 250.96 nm

14.1.3 Muonic atom data

14.1.3.1 Muonic 2p-1s transition energies, muonic Barrett radii, and model dependent RMS-radii

$E_{\rm exp}$	Experimental muonic atom transition energies (center of gravity of 2p-1s);
	the error (given in parantheses) is the statistical one.
E_{theor}	Energy of the transition calculated using a two parameter Fermi distribution.
t	Skin thickness fixed at 2.30 fm.
с	Half-density radius fitted to reproduce the experimental transition energy.
NPol	Calculated nuclear polarization correction.
$< r^2 >_{model}^{1/2}$	RMS charge radius calculated from t and c, model dependent.
R _{kα}	Model-independent Barrett equivalent radius; the parameters k and α are fitted to the corresponding transition; the first error is derived from the error of the experimental transition energy; the second error is estimated assuming as an upper limit a 30% error for the nuclear polarization corrections. For more details see Introduction Chapter 4.
C_{z}	Sensitivity factor $C_z = dR_{k\alpha}/dE$.

Landolt-Börnstein New Series I/20

14-Si	Silicon

A	E _{exp} [keV]	E _{theo} [keV]	Npol [keV]	<i>c</i> [fm]	$< r^2 >_{model}^{1/2}$ [fm]	α [1/fm]	k	$\frac{C_z}{[10^{-3} \text{fm/eV}]}$	$R^{\mu}_{k\alpha}$ [fm]	Ref.
28	400.173(5)	400.173	0.055	3.1544(7)	3.123	0.0446	2.0621	-0.149	4.0112(7;25)	FHH92
29	400.375(45)	400.375	0.053	3.1482(86)	3.120	0.0446	2.0620	-0.149	4.0060(67;26)	FHH92
30	400.295(44)	400.295	0.051	3.1720(84)	3.134	0.0446	2.0622	-0.149	4.0250(66;26)	FHH92

14.1.3.2 Differences of Barrett-radii

The first error is derived from the error of the experimental transition energies. As an upper limit, the second error was estimated assuming a 10% error for the larger of the nuclear polarization corrections of the two isotopes. For more details see Introduction Chapter 4.

Isotope pair	$\Delta R^{\mu}_{k\alpha}$ [10 ⁻³ fm]
30 - 28 29 - 28	$13.8 \pm 6.0; \pm 0.8 \\ -5.2 \pm 6.0; \pm 0.8$

14.1.4 Elastic electron scattering results

14.1.4.1 Root mean square nuclear charge radii $< r^2 >_e^{1/2}$

A	$< r^2 >_{\rm e}^{1/2} [{\rm fm}]$	Ref.
28	3.106 ± 0.030 3.15 ± 0.04	LYS74 BIG77
• •	3.340 ± 0.018	Mi82
29	3.17 ± 0.05 3.079 ± 0.021	BJG77 Mi82
30	$\begin{array}{c} 3.176 \pm 0.022 \\ 3.193 \pm 0.013 \end{array}$	Mi82 WJL92

14.1.4.2 Changes of root mean square nuclear charge radii $\delta < r^2 > e^{1/2}$

Isotope pair	$\delta < r^2 >_{\rm e}^{1/2}$ [fm]	Ref.
30 - 28 29 - 28	$\begin{array}{c} 0.03 \pm 0.15 \\ -0.05 \pm 0.25 \end{array}$	BJG77 BJG77

14.3 References for 14-Si

- BJG77 S.W. Brian, A. Johnston, W.A. Gillesppie, et al., J. Phys. **G3**, 821–832 (1977) The groundstate charge distribution of the silicon isotopes and the excited states of ²⁸Si, ³⁰Si (*contains* ²⁹Si *also*).
- FHH92 G. Fricke, J. Herberz, T. Hennemann, G. Mallot, L.A. Schaller, L. Schellenberg, C. Piller, and R. Jacot-Guillarmod, Phys. Rev. C45, 80–89, (1992) Behavior of the nuclear charge radii

systematics in the s-d shell	from muonic	atom measurements
systematics in the s-u shen	mom muome	atom measurements.

- HH62 J.R. Holmes and M. E. Hoover, J. Opt. Soc. Am. 52, 247-250 (1962) Isotope shift in the first spectrum of silicon (Si I).
- spectrum of shifton (S11).
 G.C. Li, M.R. Yearian, I. Sick, Phys. Rev. C9, 1861–1867 (1974) High-momentum transfer electron scattering from ²⁴Mg, ²⁷Al, and ³²S.
 H. Miessen, Ph.D. thesis, Univ. Mainz, Germany, 1982; Bestimmung der Magnetisierungsdichte von ²⁹Si und ³¹P durch Elektronenstreuung.
 J. Wesseling, C.W. de Jager, L. Lapikas, et al., Nucl. Phys. A547, 519–541 (1993) Electron induced proton knock-out from the isotones ³⁰Si, ³¹P, ³²S. LYS74
- Mi82
- WJL93

Landolt-Börnstein New Series I/20