

Update muX meeting 28/06

Michael Heines

Minimizing losses in anticoincidence

- Calibration lines continuous in time
- Total muon rate λ_{μ}
- Anticoincidence window ΔT
- For any given time:
 - Rate of muons in window $\lambda = \lambda_{\mu} \Delta T$
 - Poisson distributed in time

• Probability of having k muons in the anticoincidence window $\lambda^k e^{-\lambda}$

$$P(k) = \frac{\pi c}{k!}$$

 Probability for a given time to be in anticoincidence with a muon = fraction of time remaining in anticoincidence

 $P(0)=e^{-\lambda}$

Assumes muon veto and entrance are uncorrelated in time (for most, but not all muons)

Before muon arrival

After muon arrival

After muon arrival

1 μs before and 5 μs after the muon seem to be good windows \rightarrow No significant muon induced background

Back of the envelope calculation

Time is based on germanium reference \rightarrow Negative time = after muon

Stable isotope runs: $\lambda_{\mu} \sim 65 \ kHz$

- Old window $[-10 \ \mu s; +10 \ \mu s]$: Keep $e^{-1.3} \approx 27\%$ of events
- New window $[-5 \ \mu s; +1 \ \mu s]$: Keep $e^{-0.39} \approx 68\%$ of events
- Increase in statistics: 2.48 In actual data: 1.8-1.9

⁴⁰K runs: $\lambda_{\mu} \sim 25 \ kHz$

- Old window $[-10 \ \mu s; +10 \ \mu s]$: Keep $e^{-0.5} \approx 60\%$ of events
- New window $[-5 \ \mu s; +1 \ \mu s]$: Keep $e^{-0.15} \approx 86\%$ of events
- Increase in statistics: 1.42 In actual data: 1.3-1.4

