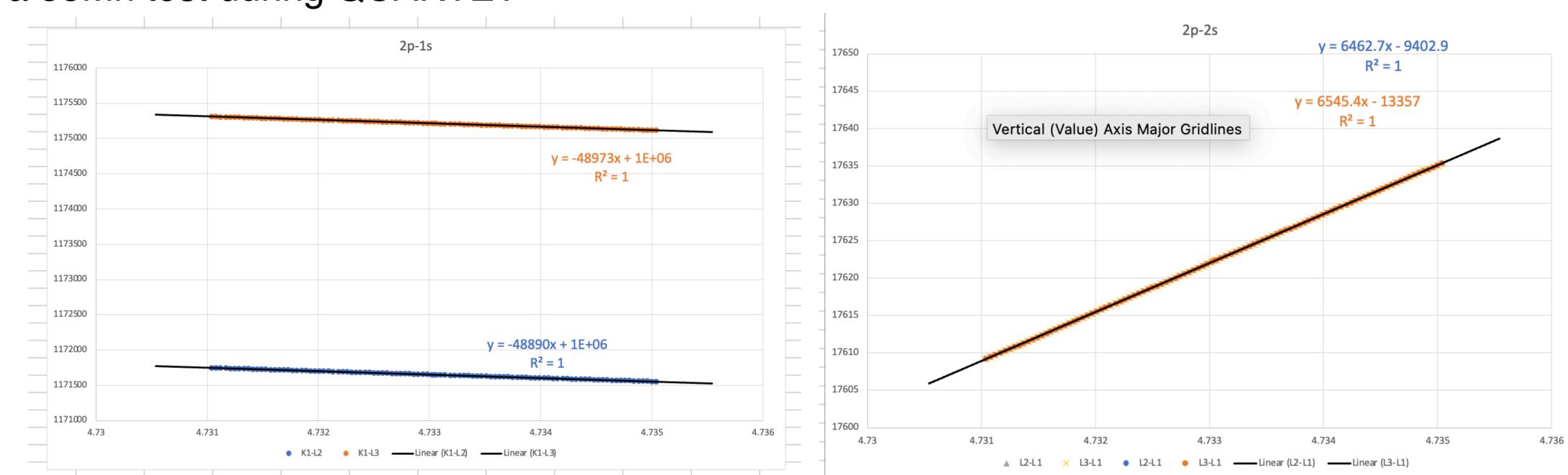


53Mn

Andreas Knecht 28. June 2024

53Mn

- Emilio has about 1.0 g of 53Mn, but mixed 1:100 with 55Mn
- Maybe some further enrichment is possible, but not enough to do germanium based spectroscopy


QUARTET?

A	E _{exp} [keV]	E _{theo} [keV]	Npol [keV]	c [fm]	$\langle r^2 \rangle_{\text{model}}^{1/2}$ [fm]	α [1/fm]	k	C_z [10 ⁻³ fm/eV]	$R^{\mu}_{k\alpha}$ [fm]	Ref.
55	1172.854(34)	1172.854	0.364	4.0728(8)	3.706	0.0707	2.1136	-0.021	4.7525(7;23)	WSH81

2s-2p with QUARTET

- Katharina has done the muDirac calculations for the sensitivity
- We have about a factor 7 less sensitivity to the charge radius, but should be able to measure >10 times better
- Looks like this could work, but challenging: currently ~1% enrichment and ~1% 2s population...
- Other elements in this region, that could be interesting? Maybe we should also do a 55Mn test during QUARTET

