Charged Higgs Pair Production Through Vector-Boson Fusion

Master's thesis project

Irina Rusetski

Paul Scherrer Institute Theory Group LTP

June 20, 2024

Problems with the SM

The Standard Model (SM): successful, yet incomplete description of particle physics

- Hierarchy problem: Higgs mass much lighter than Planck mass
 - Divergences in higher order quantum corrections
 - Fine-tuning necessary
- Baryogenesis (imbalance of matter vs antimatter)
- Dark matter
- Other: gravity, strong CP problem, neutrino oscillations, ...

Problems with the SM

The Standard Model (SM): successful, yet incomplete description of particle physics

- Hierarchy problem: Higgs mass much lighter than Planck mass
 - Divergences in higher order quantum corrections
 - Fine-tuning necessary
- Baryogenesis (imbalance of matter vs antimatter)
- Dark matter
- Other: gravity, strong CP problem, neutrino oscillations, ...

→ Supersymmetry (SUSY)

Minimal supersymmetric Standard Model

- SUSY: Spacetime symmetry between bosons and fermions: each SM particle has a superpartner
- Particle physics: Minimal supersymmetric Standard Model (MSSM)
 - Some superparticles candidates for dark matter
 - Hierarchy problem: SUSY counterterm cancel divergencies
 - Baryogenesis at supersymmetric GUT scale through proton decay

2HDM

• Higgs sector of MSSM: Two-Higgs-Doublet Model (2HDM)

$$\Phi_1=\begin{pmatrix}\Phi_1^0\\\Phi_1^-\end{pmatrix}\text{ with }Y_1=1\quad\text{and}\quad\Phi_2=\begin{pmatrix}\Phi_2^+\\\Phi_2^0\end{pmatrix}\text{ with }Y_2=-1$$

- Two Higgs doublets preserve cancellation of chiral anomalies
- \bullet Unlike in SM, cannot use conjugate $\tilde{\Phi}$ for up-type fermion masses
- 2HDM not exclusive to MSSM!

2HDM

Gives rise to five Higgs bosons:

 h^0 light scalar H^0 heavy scalar

 A^0 heavy pseudoscalar

 H^{\pm} pair of charged scalars

- \rightarrow four masses m_h , m_H , m_A , $m_{H^{\pm}}$
- ullet Vacuum expectation values (VEVs) of $\langle \Phi_1
 angle$ and $\langle \Phi_2
 angle$

$$\frac{\langle \Phi_1 \rangle}{\langle \Phi_2 \rangle} = \tan \beta$$

• Mixing angle α between CP-even states h, H

Six parameters m_h , m_H , m_A , $m_{H^{\pm}}$, $\tan \beta$, α

2HDM

Existence of charged Higgs mass eigenstates \rightarrow non-minimal Standard Model, i.e. extension of Higgs sector

possibly MSSM/SUSY

New physics and phenomenology

No experimental data/confirmation

Process

Goal: Computing cross section and NLO corrections of this process

Figure: Feynman diagram of $qq \rightarrow qqV^*V^* \rightarrow qqH^+H^-$

Process

Figure: Contributing processes

Process: Computing electroweak S-Matrix elements

$$\mathcal{M}_{\mu\nu}^{\gamma\gamma} = \begin{array}{c} \gamma_{\mu} & H^{+} \\ \\ \gamma_{\nu} & H^{-} \end{array}$$

Figure: Feynman diagrams contributing to $\mathcal{M}_{\mu\nu}^{\gamma\gamma}$

Extending the Standard Model Charged Higgs pair production through VBF Hadronic tensor

Process: Full process

What about the full diagram including fermion lines?

Deep inelastic scattering

Figure: DIS of a lepton (green) on a hadron (red)

- Approximation at high energies: hadrons composed of partons (parton model, Feynman)
- Effective Feynman rule of qqV^* -vertex

 $\propto W^{\mu\nu}$

hadronic tensor

Hadronic tensor

$$W^{\mu\nu} = F_1 \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{F_2}{xpq} \left(p^{\mu} - \frac{pq}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{pq}{q^2} q^{\nu} \right) - \frac{iF_3}{2pq} \varepsilon_{\mu\nu\sigma\rho} p^{\sigma} p^{\rho}$$

p,q fermion and virtual boson momenta, respectively

 F_1,F_2,F_3 dimensionless structure functions from DIS ightarrow known from DIS and depend on axial and vector coupling contants of quarks to vector bosons

Hadronic tensor

Figure:

$$qq \rightarrow qq\gamma^*\gamma^* \rightarrow qqH^+H^-$$

For full cross section, contract $\mathcal{M}^{V_1V_2}_{\mu\nu}$ with respective hadronic tensors $W^{\mu\nu}_{V_1V_2}$ and square it

$$\sum_{V_{1,...,4}=\gamma,Z} \mathcal{M}_{\mu\nu}^{V_{1}V_{2}} \mathcal{M} *_{\rho\sigma}^{V_{3}V_{4}} W_{V_{1}V_{3}}^{\mu\rho} W_{V_{2}V_{4}}^{\nu\sigma} \\ + \mathcal{M}_{\mu\nu}^{WW} \mathcal{M} *_{\rho\sigma}^{WW} W_{WW}^{\mu\rho} W_{WW}^{\nu\sigma}$$

 \rightarrow differential cross section also depends on structure functions F_1 , F_2 and F_3

Structure functions in parton model

 \bullet F_1 , F_2 only depend on Bjorken scaling x

$$F_2=2xF_1$$
 with $x=rac{Q^2}{2Pq}$ measure for inelasticity

ullet At LO, no colour exchange between quark lines o QCD corrections only at NLO and are known! Replace

$$F_i \to F_i + \Delta F_i$$

for NLO-corrected cross section