

LTPhD talk May 2024 Cornelis B. Doorenbos

The n2EDM experiment

• Search for the neutron electric dipole moment (nEDM)

• Statistical sensitivity:
$$\sigma(d_n) = \frac{\hbar}{2\alpha |E|T \sqrt{N}}$$

- For long T: ultracold neutrons
- For a large N: we need a good UCN transport system!

Ultra cold neutron storage

- E_{kin} < 300 neV T ~ 2 mK v ~ 5 m/s
- Weak: $n \rightarrow p^+ + e^- + \overline{V}_{\rho}$ (T ~ 880 s)
- Electromagnetic •
 - Magnetic dipole moment (dV/dB = -60.3 neV/T)
 - Electric dipole moment $(d < 10^{-26} e cm)$
- Gravity •

(dV/dh = 102 neV/m, at Earth surface)

Gravitational-magnetic confinement, (e.g. in TSPECT, neutron lifetime exp.) •

Ultra cold neutron storage

- $E_{kin} < 300 \text{ neV}, \lambda \sim 800 \text{ Å}$
- Strong force
 - Fermi pseudopotential (V_F) averages scattering lengths
 - E_{kin} < V_f: reflection under all angles

Material	V _F (neV)
Ni	252
AI	54
Steel	188
Glass	96

UCN source output

- Pulsed UCN source
- 8 s proton beam on spallation target
- UCN production
- Fill storage volume
- Drain into experiment

Requirements for UCN guides

UCN guides

Glass guides

- smooth
- Inner diameter: 13 cm
- Length: varies, up to 125 cm

NiMo coating (85:15 mass ratio),

- V_f = 220 neV
- Ni: high fermi potential, but ferromagnetic
- Mo: reduces Curie temperature well below room temperature

Coating

In house, DC magnetron sputter coating facility

The n2EDM experiment

The guide system

UCN transmission measurements

UCN transmission measurements, results

Measurement of V_{F}

Reflectometry 3.3 meV cold neutrons

Confirmed that for our NiMo coating

V_F = 216 +- 9 neV

UCN transport simulations

- Simulation of the transmission measurements, from source to detector
- Diffuse scattering fraction ("roughness") explain differences (Lambert model)
- Not caused by coating, intrinsic to guides
- Not sensitive to the other parameters

The MCUCN simulation code for ultracold neutron physics Nucl. Inst. and Meth. A, Vol. 881, p. 16-26. https://doi.org/10.1016/j.nima.2017.10.065

Roughness in UCN guides

Simulation: wrinkles in ends of guides can explain observations with diffusive scattering fraction up to 0.33.

Roughness in UCN guides

- We ordered 2 new UCN guides
 - One with the wrinkles
 - One from a new company, without wrinkles
- Coated simultaneously (equal coating process)
- Transmission, normalised to 1 m:
 - With wrinkles: 0.89
 - Without wrinkles: 0.94

Summary

- Our goal: to search for nEDM with 10⁻²⁷ e cm sensitivity
- Our requirements
 - Transmission per meter > 90 %
- We produce guides that satisfy these requirements
- We found out how to produce better guides, improving our statistics

Checking for magnetic dipoles

- Guides closest to precession chamber
- Limit for magnetic contamination:
 - o 16 nA m2
 - \circ 25 pT at 5 cm distance
 - \circ 2 million times lower than geomagnetic field
- The guides fulfil the specifications

Checking for magnetic dipoles

- Vertical B₀ field: 2.6 uT
- Sample driven past Caesium magnetometers
- Quantity of interest: ΔB between Cs magnetometers
- Sensitive to dipoles of 1 nA m² (1 pT level)

Example dipole signal

PEEK (plastic) 30 ٠ $m_v = -4.5 \text{ nAm}^2$ Data $m_z = 15.0 \text{ nAm}^2$ $z_0 = 49.063 \text{ mm}$ *shift* = 841.0 mm Fit Signal: C2 - C1 ٠ 20 Magnetic field (pT) 0 0 0 А (C1) 0 C2 В С А В -20 C1 C2 -30 -1100 -1000-900 -700 -800 -600 Motorposition (mm) С C2 C1

UCN guide dipole scan

UCN guide dipole scan, degaussed

The precession chambers

UCN transmission measurements

UCN transmission measurements

- Pulsed UCN source
 - 8 s proton beam on spallation target
 - UCN production
 - Fill storage volume
 - Drain into experiment
- Region of interest: 12-200s
 - not all neutrons before
 12s are storable
- Normalisation using second beam port at same height

Requirements for UCN guides

- 90% transmission, normalised to 1 m
- Homogeneous magnetic field
 - Field stability (30 fT)
 - Accurate magnetometry (30 fT)
 - Limit on local magnetic impurities
 - 10 nA m²
 - 16 pT @ 5 cm

Related to statistical errors	
(B-gen) Top-Bottom resonance matching condition	$-0.6 \mathrm{pT/cm} < G_{1,0} < 0.6 \mathrm{pT/cm}$
(B-gen) Field uniformity in the chambers	$\sigma(B_z) < 170\mathrm{pT}$
(B-gen) Field stability on minutes timescale	< 30 fT
(B-meas) Precision Hg co-magnetometer, per cycle, per chamber	< 30 fT
Related to systematical errors	

(B-gen) Gradient stability on the timescale of minutes	$\sigma(G)[5\min] < 50 \text{ fT/cm}$
(B-meas) Accuracy mercury co-magnetometer per chamber	$< 100 \; { m fT}$
(B-meas) Accuracy on cubic mode (Cs magnetometers)	$\delta G_3 < 20\mathrm{fT/cm}$
(B-gen) Reproducibility of the order 5 mode	$\sigma(G_5) < 20 \mathrm{fT/cm}$
(B-meas) Accuracy of the order 5 mode (field mapper)	$\delta G_5 < 20\mathrm{fT/cm}$
(B-gen) Dipoles close to the electrode	< 20 pT at 5 cm
(E-gen) Relative accuracy on E field magnitude	$< 10^{-3}$