Conductor layout:

Conductor cross-section	94.4 mm ²	
Cable	64.7 mm ² (68.5%)	
Copper	32.3 mm ² (34.2%)	
Noncopper	32.3 mm ² (34.2%)	
Impregnation	18.7 mm ² (11.8%)	
Insulation	11.1 mm² (19.8%)	

13/02/23

Strand diameter	0.7 mm
Copper-noncopper ratio	1
RRR	150
Number of strands	24*7 = 168
Total width	24.34 mm
Total height	3.88 mm
Insulation thickness	0.2 mm

Operating current	18 kA	
J eng	182 A/mm ²	
J cu	533 A/mm ²	
Inductance	0.13 H	
Stored energy	21.1 MJ	
Discharge voltage (max)	1 kV	
Time constant τ	2.34 s	
Delay time t_d	16 ms	

Adiabatic analysis:

 $C(T)S\frac{\partial T}{\partial t} = I^2 R_1(T,B) \text{ [W/m]}$

- Conductor cross-section isothermal
- Current flow in copper
- Size of normal zone to reach 100 mV at 18 kA:
 1.7 m (0 T), 0.2 m (15 T)
- T(t = 0) = 8 K: $T_{max} = 397$ K at B = 0 T constant $T_{max} = 1090$ K at B = 15 T constant $T_{max} = 1060$ K for B = k x I
- I = 17 kA, V = 1.5 kV, tau = 1.47 s: $T_{max} = 100$ K at B = 0 T constant $T_{max} = 262$ K at B = 15 T constant $T_{max} = 243$ K for B = k x I

2

• $Z(T) = \int_{T_0}^T \frac{C(x)S}{R_1(x,B)} dx$

• Quench integral: $\int I^2 dt = I^2 (t_d + \tau/2) \approx EI/V = LI^3/2V$ = 384 kA².s at 18 kA, 1.0 kV = 218 kA².s at 17 kA, 1.5 kV

Constant B:

- Cross-check the actual effect of magnetoresistance?
- 3-D model to be prepared to quantify impact of thermal conductivity in transverse and longitudinal directions, though strong impact on Tmax is not expected

3

Rd, mΩ	100		
τ, s	1.3		
I, kA	18.0	17.0	
E, MJ	21.1	18.8	
V, kV	1.8	1.7	
Tmax*, K	258	212	

* @ B = 15 T constant

15/04/23

Neglected terms so far:

- Thermal conductivity in longitudinal and transverse direction \rightarrow lower Tmax
- AC loss heating due to Bdot, thus faster current decay \rightarrow lower Tmax
- Higher resistance due to Rcoil, thus faster current decay \rightarrow lower Tmax
- Impact of iron on coil inductance during quench? ~20% higher L at low B?

Quench analysis: Copper RRR EPFL

- OD 0.7 mm, cnc ~1.2, Scu 0.21 mm², RRR Likely 50-100, but best effort
- Resistance estimate for RRR = 50: • ~80 m Ω /m at 293 K \rightarrow ~1.5 m Ω /m at 4 – 20 K \rightarrow ~4.3 m Ω /m at 4 K, 15 T
- Measurements on **non-reacted** 0.5 m-long sample
- Impact of heat-treatment...

time at 570 °C (first step) for samples with and without plated Cr.

250

BR

EPFL Quench analysis: towards 3D model

Coil splicing layout? Cooling interface?