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» BEC Widgets

» Full support for RPC control of widgets
» Added support for modular dock widgets
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» BEC downstream pipelines
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(== Redesigned and improved RTD

b@@ Introduction User Developer API Reference Q, Search = + K O
o

Beamline Experiment Control (BEC)

A python-based control system for experiments at large-scale facilities.

3 0

Introduction User guide

General information about BEC. Information for users of BEC.

Developer guide APl reference

Information for developers of BEC. Comprehensive reference of all BEC classes,
functions, and methods.
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Scans i= On this page

Scan Structure
BEC uses scans to orchestrate the data acquisition. While script-based scans can also be defined

in the command-line interface, acquisitions that require more complex orchestration should be

defined as scan plugins for the BEC scan server. This section describes the basic structure of a S P

scan and how to create a scan plugin.

Scan Structure

A scan in BEC is a Python class that inherits from the ScanBase class and implements methods
that should be executed in a specific order.

[ View code: ScanBase class >

The order of execution is defined by the run method, which is called by the scan server. By
default, the run method calls the following methods in the following order:

def run(self):
"""run the scan. This method is called by the scan server and is the main e
self.initialize()
yield from self.read_scan_motors()
yield from self.prepare_positions()
yield from self.scan_report_instructions()
yield from self.open_scan()
yield from self.stage()
yield from self.run_baseline_reading()
yield from self.pre_scan()
yield from self.scan_core()
yield from self.finalize()
yield from self.unstage()
yield from self.cleanup()

The run method is a generator function that, like most other scan methods, yields control to the
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