PAUL SCHERRER INSTITUT

L;_

WIR SCHAFFEN WISSEN — HEUTE FUR MORGEN

AWI Department Meeting

EIDO - 7901

PAUL SCHERRER INSTITUT

=

SLS

» BEC Widgets

» Full support for RPC control of widgets
» Added support for modular dock widgets

Page 3

PAUL SCHERRER INSTITUT

=

SLS

» BEC downstream pipelines

O 0 0 0 0 0 o9 © o o

formatter
Formatter

pylint

Formatter

pylint-check
Formatter

tests
test

trigger
test

tests-3.11
AdditionalTests

tests-3.12
AdditionalTests

end-2-end
End2End

end-2-end-conda
End2End

dev-pages
Deploy

Q

Q

Q

Q

Q

Q

Q

Q

Downstream

trigger: [tomcat_...
#25964

Child

® trigger: [debye_b...

#25963
Child

trigger: [pxiii_bec...
#25962

Child

trigger: [csaxs_b...
#25961

Child

trigger: [ophyd_d...
#25960

Child

trigger: [bec_wid...
#25959

Child

Page 4

PAUL SCHERRER INSTITUT

(== Redesigned and improved RTD

b@@ Introduction User Developer API Reference Q, Search = + K O
o

Beamline Experiment Control (BEC)

A python-based control system for experiments at large-scale facilities.

3 0

Introduction User guide

General information about BEC. Information for users of BEC.

Developer guide APl reference

Information for developers of BEC. Comprehensive reference of all BEC classes,
functions, and methods.

Page 5

PAUL SCHERRER INSTITUT
| — —
bec.

Section Navigation

Getting started
Devices

User Interfaces
Scans

Glossary

B v: latest »

Redesigned and improved RTD

Introduction User Developer AP| Reference Q Search * + K

Scans i= On this page

Scan Structure
BEC uses scans to orchestrate the data acquisition. While script-based scans can also be defined

in the command-line interface, acquisitions that require more complex orchestration should be

defined as scan plugins for the BEC scan server. This section describes the basic structure of a S P

scan and how to create a scan plugin.

Scan Structure

A scan in BEC is a Python class that inherits from the ScanBase class and implements methods
that should be executed in a specific order.

[View code: ScanBase class >

The order of execution is defined by the run method, which is called by the scan server. By
default, the run method calls the following methods in the following order:

def run(self):
"""run the scan. This method is called by the scan server and is the main e
self.initialize()
yield from self.read_scan_motors()
yield from self.prepare_positions()
yield from self.scan_report_instructions()
yield from self.open_scan()
yield from self.stage()
yield from self.run_baseline_reading()
yield from self.pre_scan()
yield from self.scan_core()
yield from self.finalize()
yield from self.unstage()
yield from self.cleanup()

The run method is a generator function that, like most other scan methods, yields control to the

Page 6

