

SWISS
PLASMA
CENTER

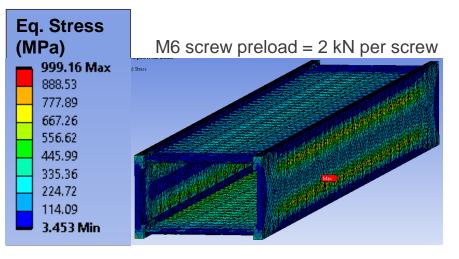
EPFL Overview

1. EDIPO2 subsize coil update

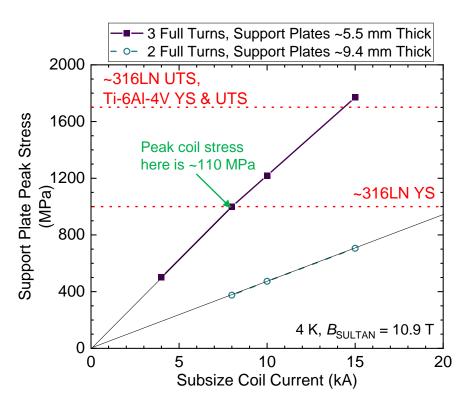
- Implications for sample dimensions with a cable bending radius of 50 mm
- Coil current limits with a cable bending radius of 50 mm
- Coil displacement estimations
- Next steps

2. First look at EDIPO2 straight sample for SULTAN- 3D CAD

Bending radius of 50 mm

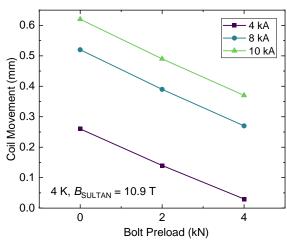

Bending trials on the most recent WST and GREMCO cable samples have led to the minimum bend radius for the cable being specified as **50 mm**.

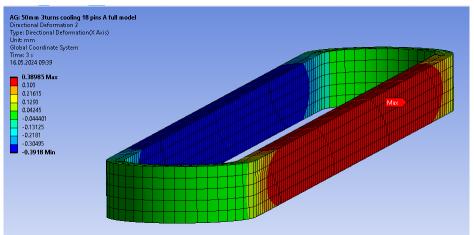
This has implications for the thickness of the coil, its support structure, and the ampere-turns that can be achieved in a SULTAN test.


Minimum Bend Radius	Number of <u>Full</u> Turns, <u>per Layer</u>	Support Plate Thickness, per Plate			
50 mm	2	~9.4 mm			
00 111111	3	~5.5 mm			

Implications for stresses

Example below: 8 kA, 3 full turns per layer




The design is limited by the plates

Coil movement, 3 Turns

Coil movement values during EM loading are similar to that suggested by ASG for their design in the recent Zoom meeting (~0.3 mm)

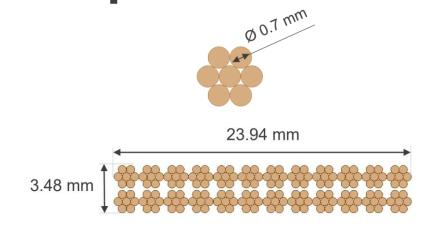
Next steps

EPFL

• Check effects of thermal contraction during cooldown, check cooling performance

Decision on contract structure for the supplier

• If no further major design changes are anticipated, produce drawings for technical specification(?)


EDIPO2 Straight Sample for SULTAN - Update

EDIPO2 straight sample - recap

We have acquired ~32.5 km of Bruker RRP strand for EDIPO2 cable prototyping.

A straight sample test is needed to confirm that the average strand performance is retained in the cable.

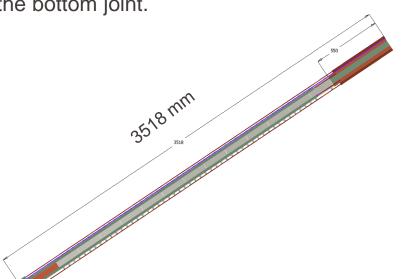
	Production		Metlab		Cryolab		ic (12T) spec	(12T) spec: ≥ 416 A			≥ 20	
Billets:	length [m] weight Dia. Avg. twist	twist	ist Cu:SC (1.05 - 1.25)	HT out	RRR Ic (12T (best effort) [A]	lc (12T) [A]	lc (13T) [A]	Ic (14T) [A]	Ic (15T) [A]	n-value		
H0723-1	763	2.6	0.697	10	1.24	11/13	70	423	343	271	209	33
H0723-2	1113	3.7	0.697	-		11/13						
H0723-3	1378	4.6	0.697	-		11/13						
H0723-5	1200	4.0	0.697	-		11/13						
H0723-6	1779	5.9	0.697	10	1.25	11/13	90	424	342	272	210	37
H0724-1	1241	4.1	0.697	10	1.25	11/13	49	439	353	281	219	31
H0724-2	1895	6.3	0.697	-		11/13						
H0724-3	4819	16.1	0.697	-		11/13						
H0724-4	1524	5.1	0.697	-		11/13						
H0724-5	3787	12.7	0.697	10	1.25	11/13	65	457	370	300	236	47
H0047-2	3319	11.1	0.697	10	1.23	11/16	50	439	359	287	225	35
H0047-3	2472	8.3	0.697	10	1.23	11/16	57	445	362	289	227	39
H0049-2	755	2.5	0.697	10	1.07	11/16	59	422	344	274	215	42
H0049-3	3593	12.0	0.697	-		11/16						
H0049-4	2910	9.7	0.697	10	1.06	11/16	55	423	341	270	208	43
	32548	108.8		•								

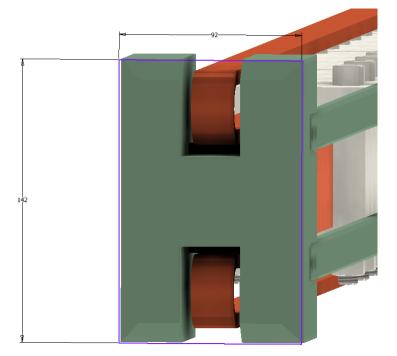
R&W u-bend vs. two straight sections?

For R&W, the HT is performed at an intermediate bending radius, between straight and the smallest radius in the winding (80 mm).

To adapt a R&W U-bend sample to SPC's furnace **and** the SULTAN test well, i.e., $\Phi = 190$ mm heat treatment and u-bend 60 mm radius, the strain would be:

- Straight section: 1.8%
- Bent section: 1%

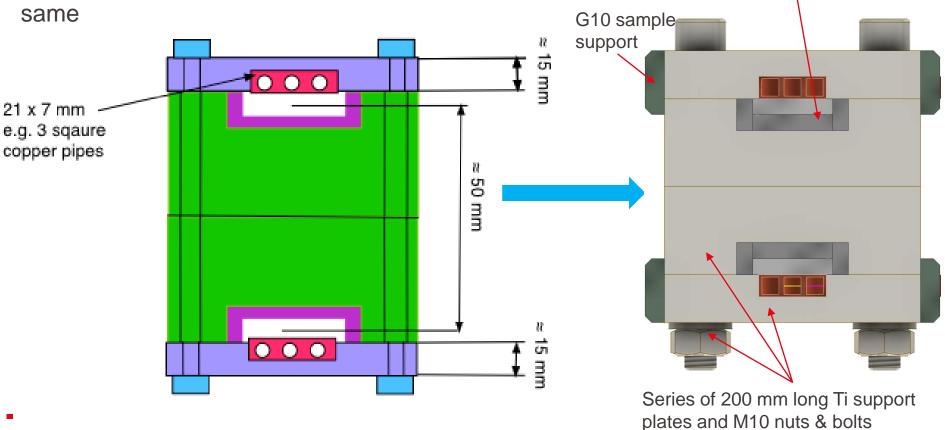

Experiment loses relevance -> react 2 straight sections (+ 2 spares) and include a bottom joint in the sample.


Straight sample design overview

Designed according to SULTAN User Spec

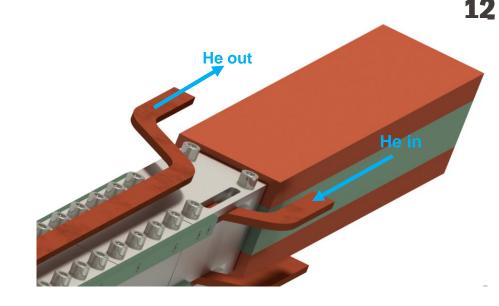
Cross section 92 mm x 142 mm to allow 1 mm insertion gap

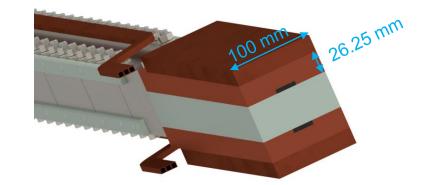
The sample is currently 3518 mm long, from top of Cu terminal to bottom of G10 spacer attached to the bottom joint.


.stp CAD file is in 7007/Greenwood.

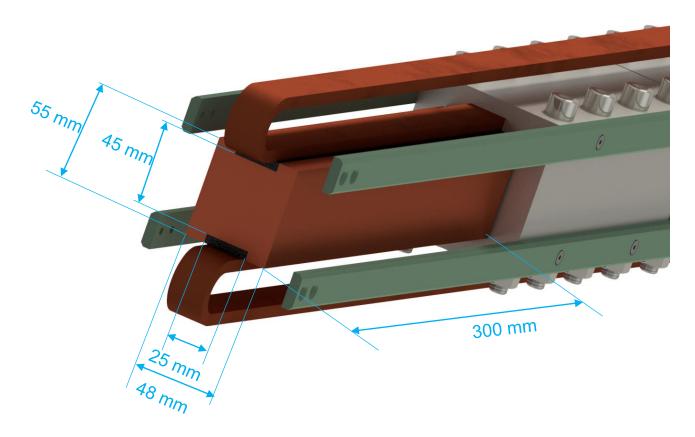
Teflon channel, single ushaped piece or 3 pieces

High field zone cross section


Reproduced from PB's memo, dimensions are the same


EPFL

Upper terminal region


Cu pipes enter the sample just beyond the terminals, in the first 200 mm Ti section

Bottom joint region

(with the G10 spacer at the bottom removed)

Cu cooling pipes

Very simple design in the CAD model for now, 3x 7 mm square Cu pipes, treated as single object

Possible alternative: Metalkraft Technologies, USA

https://metalkrafttechnologies.com/

DIVERSE MULTICHANNEL PROFILES

At MetalKraft Tech our extrusion work involves a diverse array of profile types.

Two Channels

en channels

....

Next steps

Manufacturing & assembly tooling/jigs

Performance predictions

Instrumentation

EPFL

SPC workshop input