#### Conductor layout:



| Conductor cross-section | 94.4 mm <sup>2</sup>         |
|-------------------------|------------------------------|
| Cable                   | 64.7 mm² (68.5%)             |
| Copper                  | 32.3 mm <sup>2</sup> (34.2%) |
| Noncopper               | 32.3 mm <sup>2</sup> (34.2%) |
| Impregnation            | 18.7 mm² (11.8%)             |
| Insulation              | 11.1 mm <sup>2</sup> (19.8%) |

13/02/23

| Strand diameter        | 0.7 mm     |  |  |  |  |  |  |
|------------------------|------------|--|--|--|--|--|--|
| Copper-noncopper ratio | 1          |  |  |  |  |  |  |
| RRR                    | 150        |  |  |  |  |  |  |
| Number of strands      | 24*7 = 168 |  |  |  |  |  |  |
| Total width            | 24.34 mm   |  |  |  |  |  |  |
| Total height           | 3.88 mm    |  |  |  |  |  |  |
| Insulation thickness   | 0.2 mm     |  |  |  |  |  |  |

| Operating current       | 18 kA                 |
|-------------------------|-----------------------|
| J eng                   | 182 A/mm <sup>2</sup> |
| J cu                    | 533 A/mm <sup>2</sup> |
| Inductance              | 0.13 H                |
| Stored energy           | 21.1 MJ               |
| Discharge voltage (max) | 1 kV                  |
| Time constant $\tau$    | 2.34 s                |
| Delay time $t_d$        | 16 ms                 |

Adiabatic analysis:

 $C(T)S\frac{\partial T}{\partial t} = I^2 R_1(T,B) \text{ [W/m]}$ 

- Conductor cross-section isothermal
- Current flow in copper
- Size of normal zone to reach 100 mV at 18 kA:
   1.7 m (0 T), 0.2 m (15 T)
- T(t = 0) = 8 K:  $T_{max} = 397$  K at B = 0 T constant  $T_{max} = 1090$  K at B = 15 T constant  $T_{max} = 1060$  K for B = k x I
- I = 17 kA, V = 1.5 kV, tau = 1.47 s:  $T_{max} = 100$  K at B = 0 T constant  $T_{max} = 262$  K at B = 15 T constant  $T_{max} = 243$  K for B = k x I



# • $Z(T) = \int_{T_0}^T \frac{C(x)S}{R_1(x,B)} dx$

• Quench integral:  $\int I^2 dt = I^2 (t_d + \tau/2) \approx EI/V = LI^3/2V$ = 384 kA<sup>2</sup>.s at 18 kA, 1.0 kV = 218 kA<sup>2</sup>.s at 17 kA, 1.5 kV

Constant B:



- Cross-check the actual effect of magnetoresistance?
- 3-D model to be prepared to quantify impact of thermal conductivity in transverse and longitudinal directions, though strong impact on Tmax is not expected

| Rd, mΩ   | 100  |      |  |  |  |  |  |  |  |
|----------|------|------|--|--|--|--|--|--|--|
| τ, s     | 1.3  |      |  |  |  |  |  |  |  |
| I, kA    | 18.0 | 17.0 |  |  |  |  |  |  |  |
| E, MJ    | 21.1 | 18.8 |  |  |  |  |  |  |  |
| V, kV    | 1.8  | 1.7  |  |  |  |  |  |  |  |
| Tmax*, K | 258  | 212  |  |  |  |  |  |  |  |

\* @ B = 15 T constant



15/04/23



Neglected terms so far:

- Thermal conductivity in longitudinal and transverse direction  $\rightarrow$  lower Tmax
- AC loss heating due to Bdot, thus faster current decay  $\rightarrow$  lower Tmax
- Higher resistance due to Rcoil, thus faster current decay  $\rightarrow$  lower Tmax
- Impact of iron on coil inductance during quench? ~20% higher L at low B?

#### **Quench analysis: Copper RRR** EPFL

- OD 0.7 mm, cnc ~1.2, Scu 0.21 mm<sup>2</sup>, RRR Likely 50-100, but best effort
- Resistance estimate for RRR = 50: • ~80 m $\Omega$ /m at 293 K  $\rightarrow$  ~1.5 m $\Omega$ /m at 4 – 20 K  $\rightarrow$  ~4.3 m $\Omega$ /m at 4 K, 15 T
- Measurements on **non-reacted** 0.5 m-long sample
- Impact of heat-treatment...



time at 570 °C (first step) for samples with and without plated Cr.

250

BR

# **EPFL** Quench analysis: towards 3D model



Coil splicing layout? Cooling interface?

### **EDIPO1 QD parameters**

| Г |          |                                            |                                                               |                                    |  |  |  |  |  |  |  |  |  |
|---|----------|--------------------------------------------|---------------------------------------------------------------|------------------------------------|--|--|--|--|--|--|--|--|--|
|   | 0.099609 | {V threshold LF Cable}                     | [Volt]                                                        |                                    |  |  |  |  |  |  |  |  |  |
|   | 0.099609 | {V threshold HF Cable}                     | [Volt]                                                        |                                    |  |  |  |  |  |  |  |  |  |
|   | 0.120117 | V threshold Current leads Warm Side [Volt] | [Volt]                                                        | -                                  |  |  |  |  |  |  |  |  |  |
|   | 0.009766 | V threshold Current leads Cold Side        | [Volt]                                                        |                                    |  |  |  |  |  |  |  |  |  |
|   | 0.049805 | V threshold Bus Bar Jumper                 | [Volt]                                                        |                                    |  |  |  |  |  |  |  |  |  |
|   | 10       | UTV Threshold                              | [Volt]                                                        |                                    |  |  |  |  |  |  |  |  |  |
|   | 800      | Req Sampling Freq                          | (Hz)                                                          |                                    |  |  |  |  |  |  |  |  |  |
| Ч | 800      | Applied Sampling Freq                      | (Hz)                                                          | <b>1</b>                           |  |  |  |  |  |  |  |  |  |
|   | 40       | Req Total Validation Time                  | (ms)                                                          | L fow me to open circuit breakers  |  |  |  |  |  |  |  |  |  |
|   | 39.75    | Applied Total Validation Time              | (ms)                                                          | + lew his to open circuit breakers |  |  |  |  |  |  |  |  |  |
| Ч | - 11     | ASOT thr (1 - 100)                         | #                                                             |                                    |  |  |  |  |  |  |  |  |  |
|   | 14       | Raw Validation Time                        | (ms)                                                          |                                    |  |  |  |  |  |  |  |  |  |
|   | 1        | Fir 16 On ?                                | 0 Off; 1 On.                                                  |                                    |  |  |  |  |  |  |  |  |  |
|   | 1        | LPF Filter On ?                            | 0 Off; 1 On.                                                  |                                    |  |  |  |  |  |  |  |  |  |
|   | 35       | Ft LPF                                     | (Hz)                                                          |                                    |  |  |  |  |  |  |  |  |  |
|   | 16       | FIR delay                                  | (ms)                                                          |                                    |  |  |  |  |  |  |  |  |  |
|   | 10       | LPF Delay                                  | (ms)                                                          |                                    |  |  |  |  |  |  |  |  |  |
|   | 0.21582  | a0                                         | 0 <= a0 <= 1                                                  |                                    |  |  |  |  |  |  |  |  |  |
|   | 60       | Pre Trigger                                | (sec)                                                         |                                    |  |  |  |  |  |  |  |  |  |
|   | 10       | Post Trigger                               | (sec)                                                         |                                    |  |  |  |  |  |  |  |  |  |
|   | 1000000  | Init Time                                  | (uSec)                                                        |                                    |  |  |  |  |  |  |  |  |  |
|   | 1000000  | Pulse duration                             | (uSec)                                                        |                                    |  |  |  |  |  |  |  |  |  |
|   | 2        | Current State                              | 0 Init; 1 Autocal; 2 Reading; 3 Quench; 4 Post Trigger; 5 End |                                    |  |  |  |  |  |  |  |  |  |
|   | 1250     | Requested T Sampling                       | (uSec)                                                        |                                    |  |  |  |  |  |  |  |  |  |
|   | 1250     | Real T Sampling                            | (uSec)                                                        |                                    |  |  |  |  |  |  |  |  |  |



Setting up 3-D quench model:

- Geometry import
- Matrix of mutual inductances
- Magnetic field incl. iron (by Xabier)
- Current sharing, Tcs distribution
- Heat equation

EPFL



Geometry:

- 20 pancakes (4 per vertical, 6 per side coils)
- 560 turns (46 per vert. pancake, 16 per side pancake)
- 100 nodes per turn
- $\rightarrow$  56'000 nodes to evaluate heat equation

|   | 1       | 2       | 3       | 4       |
|---|---------|---------|---------|---------|
| 1 | 43.7290 | 0.0297  | 0.0297  | 10.1622 |
| 2 | 0.0297  | 15.5806 | -1.2102 | 0.0297  |
| 3 | 0.0297  | -1.2102 | 15.5806 | 0.0297  |
| 4 | 10.1622 | 0.0297  | 0.0297  | 43.7290 |
|   |         |         |         |         |

Inductance:

•

- Magnet: 137 mH •
- Coil: 4 x 4 matrix
- Pancake: 20 x 20 matrix



turn pancake

coil

٠

Turn: 560 x 560 matrix (Average value = 0.44  $\mu$ H, max value = 9.93  $\mu$ H, min value = -0.21  $\mu$ H)

| _  |         |         |         |         |         |         |         |         |         | /       | ·       |         |         |         |         |         |         |         |         |         |
|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|    | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      | 13      | 14      | 15      | 16      | 17      | 18      | 19      | 20      |
| 1  | 3.5317  | 2.7587  | 2.2960  | 1.9329  | 0.0110  | -0.0109 | -0.0273 | -0.0393 | -0.0479 | -0.0540 | -0.0540 | -0.0479 | -0.0393 | -0.0273 | -0.0109 | 0.0110  | 0.6208  | 0.5538  | 0.4962  | 0.4464  |
| 2  | 2.7587  | 3.5317  | 2.7587  | 2.2960  | 0.0400  | 0.0110  | -0.0109 | -0.0273 | -0.0393 | -0.0479 | -0.0479 | -0.0393 | -0.0273 | -0.0109 | 0.0110  | 0.0400  | 0.6990  | 0.6208  | 0.5538  | 0.4962  |
| 3  | 2.2960  | 2.7587  | 3.5317  | 2.7587  | 0.0784  | 0.0400  | 0.0110  | -0.0109 | -0.0273 | -0.0393 | -0.0393 | -0.0273 | -0.0109 | 0.0110  | 0.0400  | 0.0784  | 0.7910  | 0.6990  | 0.6208  | 0.5538  |
| 4  | 1.9329  | 2.2960  | 2.7587  | 3.5317  | 0.1293  | 0.0784  | 0.0400  | 0.0110  | -0.0109 | -0.0273 | -0.0273 | -0.0109 | 0.0110  | 0.0400  | 0.0784  | 0.1293  | 0.8997  | 0.7910  | 0.6990  | 0.6208  |
| 5  | 0.0110  | 0.0400  | 0.0784  | 0.1293  | 0.7086  | 0.4841  | 0.3838  | 0.3160  | 0.2664  | 0.2282  | -0.0275 | -0.0301 | -0.0324 | -0.0342 | -0.0353 | -0.0357 | -0.0273 | -0.0393 | -0.0479 | -0.0540 |
| 6  | -0.0109 | 0.0110  | 0.0400  | 0.0784  | 0.4841  | 0.7086  | 0.4841  | 0.3838  | 0.3160  | 0.2664  | -0.0301 | -0.0324 | -0.0342 | -0.0353 | -0.0357 | -0.0353 | -0.0109 | -0.0273 | -0.0393 | -0.0479 |
| 7  | -0.0273 | -0.0109 | 0.0110  | 0.0400  | 0.3838  | 0.4841  | 0.7086  | 0.4841  | 0.3838  | 0.3160  | -0.0324 | -0.0342 | -0.0353 | -0.0357 | -0.0353 | -0.0342 | 0.0110  | -0.0109 | -0.0273 | -0.0393 |
| 8  | -0.0393 | -0.0273 | -0.0109 | 0.0110  | 0.3160  | 0.3838  | 0.4841  | 0.7086  | 0.4841  | 0.3838  | -0.0342 | -0.0353 | -0.0357 | -0.0353 | -0.0342 | -0.0324 | 0.0400  | 0.0110  | -0.0109 | -0.0273 |
| 9  | -0.0479 | -0.0393 | -0.0273 | -0.0109 | 0.2664  | 0.3160  | 0.3838  | 0.4841  | 0.7086  | 0.4841  | -0.0353 | -0.0357 | -0.0353 | -0.0342 | -0.0324 | -0.0301 | 0.0784  | 0.0400  | 0.0110  | -0.0109 |
| 10 | -0.0540 | -0.0479 | -0.0393 | -0.0273 | 0.2282  | 0.2664  | 0.3160  | 0.3838  | 0.4841  | 0.7086  | -0.0357 | -0.0353 | -0.0342 | -0.0324 | -0.0301 | -0.0275 | 0.1293  | 0.0784  | 0.0400  | 0.0110  |
| 11 | -0.0540 | -0.0479 | -0.0393 | -0.0273 | -0.0275 | -0.0301 | -0.0324 | -0.0342 | -0.0353 | -0.0357 | 0.7086  | 0.4841  | 0.3838  | 0.3160  | 0.2664  | 0.2282  | 0.1293  | 0.0784  | 0.0400  | 0.0110  |
| 12 | -0.0479 | -0.0393 | -0.0273 | -0.0109 | -0.0301 | -0.0324 | -0.0342 | -0.0353 | -0.0357 | -0.0353 | 0.4841  | 0.7086  | 0.4841  | 0.3838  | 0.3160  | 0.2664  | 0.0784  | 0.0400  | 0.0110  | -0.0109 |
| 13 | -0.0393 | -0.0273 | -0.0109 | 0.0110  | -0.0324 | -0.0342 | -0.0353 | -0.0357 | -0.0353 | -0.0342 | 0.3838  | 0.4841  | 0.7086  | 0.4841  | 0.3838  | 0.3160  | 0.0400  | 0.0110  | -0.0109 | -0.0273 |
| 14 | -0.0273 | -0.0109 | 0.0110  | 0.0400  | -0.0342 | -0.0353 | -0.0357 | -0.0353 | -0.0342 | -0.0324 | 0.3160  | 0.3838  | 0.4841  | 0.7086  | 0.4841  | 0.3838  | 0.0110  | -0.0109 | -0.0273 | -0.0393 |
| 15 | -0.0109 | 0.0110  | 0.0400  | 0.0784  | -0.0353 | -0.0357 | -0.0353 | -0.0342 | -0.0324 | -0.0301 | 0.2664  | 0.3160  | 0.3838  | 0.4841  | 0.7086  | 0.4841  | -0.0109 | -0.0273 | -0.0393 | -0.0479 |
| 16 | 0.0110  | 0.0400  | 0.0784  | 0.1293  | -0.0357 | -0.0353 | -0.0342 | -0.0324 | -0.0301 | -0.0275 | 0.2282  | 0.2664  | 0.3160  | 0.3838  | 0.4841  | 0.7086  | -0.0273 | -0.0393 | -0.0479 | -0.0540 |
| 17 | 0.6208  | 0.6990  | 0.7910  | 0.8997  | -0.0273 | -0.0109 | 0.0110  | 0.0400  | 0.0784  | 0.1293  | 0.1293  | 0.0784  | 0.0400  | 0.0110  | -0.0109 | -0.0273 | 3.5317  | 2.7587  | 2.2960  | 1.9329  |
| 18 | 0.5538  | 0.6208  | 0.6990  | 0.7910  | -0.0393 | -0.0273 | -0.0109 | 0.0110  | 0.0400  | 0.0784  | 0.0784  | 0.0400  | 0.0110  | -0.0109 | -0.0273 | -0.0393 | 2.7587  | 3.5317  | 2.7587  | 2.2960  |
| 19 | 0.4962  | 0.5538  | 0.6208  | 0.6990  | -0.0479 | -0.0393 | -0.0273 | -0.0109 | 0.0110  | 0.0400  | 0.0400  | 0.0110  | -0.0109 | -0.0273 | -0.0393 | -0.0479 | 2.2960  | 2.7587  | 3.5317  | 2.7587  |
| 20 | 0.4464  | 0.4962  | 0.5538  | 0.6208  | -0.0540 | -0.0479 | -0.0393 | -0.0273 | -0.0109 | 0.0110  | 0.0110  | -0.0109 | -0.0273 | -0.0393 | -0.0479 | -0.0540 | 1.9329  | 2.2960  | 2.7587  | 3.5317  |



EPFL



#### Magnetic field within the coil winding (over 56'000 nodes)



Current sharing at 18 kA operation

Intra-strand resistance neglected

#### Tcs distribution along conductor length



14

Heat equation:

$$C\frac{\partial T}{\partial t} = q_{joule} + \frac{\partial}{\partial x} \left( k \frac{\partial T}{\partial x} \right) + q_{trans} - q_{cooling} + q_{external} \left[ W/m^3 \right]$$

```
for i=1:Nl Connectivity matrices for nodes
Ti=T(i,:); in the same cross-section
h1=h_face(Ti);
h2=h_side(Ti);
q_trans(i,:)=sum((C_face.*(h1+h1')/2+C_side.*(h2+h2')/2).*(Ti'-Ti),1);
end
```

```
qface(coolingface)=h_face(T(coolingface)).*(T(coolingface)-4.2);
qside(coolingside)=h_side(T(coolingside)).*(T(coolingside)-4.2);
q_cooling=qface+qside;
```

```
if t>=heater_t(1) && t<=heater_t(2) && ~quench
    q_heater(heater_pos)=P; %W/m
end
```

Current discharge once 'quench is detected' (td = 0.1 s):

```
L\frac{\partial I}{\partial t} = -V_{coil} - IR_d
```

(mutual inductance used to calculate distribution of voltage to ground)

#### Conductor face and conductor side cooled by helium (through 0.2 mm G10)



#### External energy of 1.7 J deposited over 12 cm (3 nodes) within 0.1 s (power ~140 W/m)





16

EPFL







- ~98% stored energy released in Rdump,
   ~660 kJ in the coil winding, i.e. losing
   ~250 liters of helium (latent heat 2.6 kJ/liter)
- Heat removal rate by helium up to ~30 kW
- NZPV strongly depends on temperature threshold, up to ~100 m/s for the 10 K front

### EPFL





