

ETH zürich

ETHZ-PSI Quantum Computing Hub

Control system for ion trap quantum applications

Simon Thür – Ion Trap Quantum Computing July 31st 2024

Activities

Outline

Intro to trapped ion qubits and scaling

Architecture: ion traps with integrated optics

Benchmark: operating arrays of optical atomic clocks

🌔 PSI

Trapped ion qubits

NIST, UIBK, Oxford and many more

Data: TIQI group, ETHZ (A. Ricci / K. Mehta)

Scaling

State-of-the-art?

"A Race Track Ion Trap Quantum Processor" S. Moses et al. PRX 13, 041052 (2023)

- Light delivered in free space to 4 zones
- 2-d loop is a 1-dimensional ion array (with swaps for connectivity)

Quantum CCD: split + shuttle Wineland et al. 2000

- □ High fidelity qubit operations
- □ Parallel and individual control and readout
- □ Mid-circuit measurement and feedback
- □ Continuous calibration
- Connectivity through ion transport
- Logical qubits

Activities

Cryo / UHV system

Tereza Viskova

- \rightarrow based on several generations of ETH system
- \rightarrow designed for flexibility to scale up connectivity and rapid turn-around
- → UHV / 40 K / 4 K chambers and high cooling power (~1.5 W tested)

2D trap array with integrated optics Lion

For 20 zones:

- 60 laser beams, 15 fibers
- 120 DC electrodes

For 1 zone (1-2 ions):

- three laser beams
- 6 DC electrodes

Packaging

SI

Carrier PCB

Interposer up to 400 channels

Filterboard with flex cable connections

K. Mehta / ETH

Optical (F. Timpu)

Automate alignment: -> Faster (and better) results

Mehta et al., Nature (2020)

Clock experiments

Multi-zone clock operation

PRL 111, 090802 (2013)

PHYSICAL REVIEW LETTERS

week ending 30 AUGUST 2013

Efficient Atomic Clocks Operated with Several Atomic Ensembles

J. Borregaard* and A.S. Sørensen

QUANTOP, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark (Received 24 April 2013; revised manuscript received 12 July 2013; published 27 August 2013)

Atomic clocks are typically operated by locking a local oscillator (LO) to a single atomic ensemble. In this Letter, we propose a scheme where the LO is locked to several atomic ensembles instead of one. This results in an exponential improvement compared to the conventional method and provides a stability of the clock scaling as $(\alpha N)^{-m/2}$ with N being the number of atoms in each of the *m* ensembles and α a constant depending on the protocol being used to lock the LO.

- ✓ Single qubit operations (high fidelity?)
- \checkmark Parallel and individual control and readout
- Mid-circuit measurement and feedback
- Continuous calibration
- Connectivity (transport in 1D and 2D)
- Logical qubits

Original proposal: Rosenband and Leibrandt (2013) Pulse sequence: Hume and Leibrandt PRA 93, 032138 (2016) Also see: Correlation spectroscopy, Clements et al. PRL 125, 243602 (2020) Neutral atoms: Shaw et al. Nat. Phys. (2024)

Phase correction

New integrated photonics ion traps with 2D geometry Benchmark traps, lasers, and control systems using advanced clock protocols

Future avenues: active optical devices, transport between zones^{*}, integrated readout

* Mordini et al., in preparation (2024) Lancelotti et al., arXiv:2312.1400 (2023)

The ARTIQ system

ARTIQ (Advanced Real-Time Infrastructure for Quantum physics)

- Nano second timing
- Time critical code running on an FPGA
- RPCs, subkernels, DMAs
- ARTIQ
- Existing Hardware
 - DDS (4 Channels per module)
 - ADC (4 Channels per module)
 - DAC (32 Channels per module)
 - TTL (4 Channels per module)

What is my Project though?

Create an abstraction layer

"Help" with experiments

The QuantumGuide project at PSI - reminders

🌙 PSI

PSI

3 Paul Scherrer Insti

03.07.2024

PAUL SCHERRER INSTITUT

[=] **ETH**zürich

European Innovation Council

Funded by the European Union

Questions?