
AWI Department Update
3rd of September, 2024

Introduction to

& association with



What is it ?

BEC is the new Experiments Control System
for SLS 2.0 beamlines

                       

inspired by                           (NSLS-II)

Open source software with BSD license
 hosted on PSI gitlabCode repository

in-house development

https://gitlab.psi.ch/bec/bec


Data catalogue: SciCat

E-logbook: SciLog

Live data
visualization

2D detectors
Jungfraujoch, std-daq,

AreaDetector...

Data Archiving

Experiment scripts,
user sequences

Big picture

Storage Infrastructure

User interaction

Beamline Device control

Data Acquisition: Ophyd devices

BEC Widgets

Data Processing



Data catalogue: SciCat

E-logbook: SciLog

Live data
visualization

2D detectors
Jungfraujoch, std-daq,

AreaDetector...

Data Archiving

Experiment scripts,
user sequences

Big picture

Storage Infrastructure

User interaction

Beamline Device control

Data Acquisition: Ophyd devices

BEC Widgets

Data Processing



Technical choices

Written in Python Services-oriented
architecture

Redis as data buffer,
message broker

IPython shellDevices control via
Ophyd (Bluesky)

sub-project: ophyd_devices sub-project: bec_widgets

Graphical framework
based on Qt

https://gitlab.psi.ch/bec/ophyd_devices
https://gitlab.psi.ch/bec/bec_widgets


Architecture



Redis Connector

BEC core library object to communicate with Redis, used by all services

RedisConnector

pub/sub events
listener thread

streams
listener thread

BEC messages
queue msg processing

thread

execute
callbacks

set (store in Redis),
publish (event)

or add to stream



endpoint:
device_instructions

endpoint:
device_instructions

Communication Endpoints

Messages that can be sent or received by the Redis Connector are defined
using Pydantic models, and all derive from the BECMessage base class

 
Pydantic ensures data validation for the message data fields

 
BEC services connect to endpoints : named targets which specify the

expected message type, and the action to take in Redis (store, publish, ...)

RedisConnector

RedisConnector
BECMessage

DeviceInstruction

BECMessage
DeviceInstruction

serialization
{

dev name: "xxx",
action: "trigger",
parameters: { }

}



Configuration

BEC configuration is defined in text files in YAML format

/home/matias/dev/example_configuration.yaml

Beamline devices configuration exampleBEC servers configuration example

/home/matias/dev/example_servers_cfg.yaml



BEC command line

1. Starting BEC servers



BEC command line

2. Starting command line, loading configuration, starting a scan



Automatic Deployment

https://git.psi.ch/psd_deployments/configs/sls/{beamline}



Automatic Deployment

https://git.psi.ch/psd_deployments/configs/sls/{beamline}
Configuration files (YAML),

tell which versions on which hosts
have to be deployed

bec.yaml

bec_console.yaml



Automatic Deployment

https://git.psi.ch/psd_deployments/configs/sls/{beamline}
Configuration files (YAML),

tell which versions on which hosts
have to be deployed

<triggers>

bec.yaml

bec_console.yaml



Automatic Deployment

https://git.psi.ch/psd_deployments/configs/sls/{beamline}
Configuration files (YAML),

tell which versions on which hosts
have to be deployed

<triggers>

bec.yaml

bec_console.yaml

<execute roles>

Console deployment: BEC IPython,
BEC Widgets app

Server deployment: BEC servers,
BEC beamline-specific code (plugins)



Automatic Deployment

https://git.psi.ch/psd_deployments/configs/sls/{beamline}
Configuration files (YAML),

tell which versions on which hosts
have to be deployed

<triggers>

bec.yaml

bec_console.yaml

<execute roles>

Console deployment: BEC IPython,
BEC Widgets app

Server deployment: BEC servers,
BEC beamline-specific code (plugins)

"bec_deployment" directory with source code + bec_venv Python virtual environment
with BEC packages installed via "pip -e" (editable/developer mode)



Beamlines progress

Phase 1 Phase 2

Debye (X01DA) MicroXAS (X05LA)

cSAXS (X12SA) Phoenix (X07MB)

PXI      PXII      PXIII (MX) RIXS (X03MA)

SuperXAS (X10DA) Xtreme (X07MA)

SIM (X11MA) VUV (X04DB)

PolLux (X07DA) + NanoXAS (X07DB) XIL (X09L)

Addams (X04SA) Optics (X05DA)

Tomcat (X02DA, x2) - waiting for network
connectivity

Diagnostics (X01DD, X08DB)

Deployed and in use by BL scientist(s) Deployed, not in use yet No deployment yet

In no particular order :



&

AWI Department Update
3rd of September, 2024



About BLISS



Python library with tools
Command Line Interface, web terminal

Configuration application
Live visualization

Data service & file writer

About BLISS



Python library with tools
Command Line Interface, web terminal

Configuration application
Live visualization

Data service & file writer

Sequencer for any kind of acquisition procedures
 hardware control

or built-in drivers

About BLISS



Python library with tools
Command Line Interface, web terminal

Configuration application
Live visualization

Data service & file writer

At the heart of the ESRF software ecosystem
Implementation of Data Policy

Graphical Interfaces
Online Data Analysis

Sequencer for any kind of acquisition procedures
 hardware control

or built-in drivers

About BLISS



BLISS overview

scalar

Beacon server



BLISS overview

scalar

Devices & sequences
configuration

Web interface for
configuration editing

Beacon server



BLISS overview

scalar

Devices & sequences
configuration

Web interface for
configuration editing

Beacon server



BLISS overview

scalar

Devices & sequences
configuration

Web interface for
configuration editing

Beacon server



Data publishing

BLISS relies on blissdata to publish acquisition data to Redis

Blissdata



Data publishing

BLISS relies on blissdata to publish acquisition data to Redis

Blissdata

For big 2D data, only
references are published



Data publishing

BLISS relies on blissdata to publish acquisition data to Redis

Blissdata

For big 2D data, only
references are published

blissdata is a separate package with
limited dependencies, which makes it easy

to integrate in any Python project



Symbiosis



Symbiosis

In which areas both BEC and BLISS could benefit each other ?

Where is it worth collaborating ? "Return on investment"

What would be beneficial for the users community ?



Proposal

blissdata
PyMca:
A tool designed to assist with XRF data
analysis and beyond.

Publishing BEC scans with blissdata gives access to ESRF data
writer, display and processing tools



BEC with BLISS Writer and Flint
Work in progress

https://s3.amazonaws.com/media-p.slid.es/videos/331850/lhEEjLPQ/bec_bliss_awidptupd.mp4


Conclusion


