Thermalization and Chaos in QFT

Matthew T. Walters Heriot-Watt University

Based on work done in collaboration with:

Luca Delacrétaz, Liam Fitzpatrick, Ami Katz

arXiv: 2105.02229, 2207.11261

Big Picture

Quantum Mechanics + Special Relativity = Quantum Field Theory

Big Picture

Quantum Mechanics + Special Relativity = Quantum Field Theory

Goal for Today

Punchline

- QFTs are generically chaotic
- Naive intuition: UV states are described by CFT (relevant deformation)
- Macroscopic features match CFT, but microscopic features are sensitive to deformation
- High-energy dynamics governed by Eigenstate Thermalization
 Hypothesis (ETH) and Random Matrix Theory (RMT)
- States near multi-particle thresholds violate ETH, with semiclassical description

Menu

- \circ Model: 1+1d ϕ^4 theory
- Method: Conformal truncation
- Understanding high-energy states
- Thermalization and chaos in QFT
- "Scar" states at weak coupling

Menu

- \circ Model: 1+1d ϕ^4 theory
- Method: Conformal truncation
- Understanding high-energy states
- Thermalization and chaos in QFT
- "Scar" states at weak coupling

Lots of plots

Model: $1 + 1d \phi^4$ theory

$$\mathcal{L} = (\partial \phi)^2 - m^2 \phi^2 - g \phi^4$$

- ullet \mathbb{Z}_2 symmetry: $\phi \to -\phi$
- Critical point: Ising model

Goal: study high-energy states at both weak and strong coupling

Model: $1 + 1d \phi^4$ theory

$$\mathcal{L} = (\partial \phi)^2 - m^2 \phi^2 - g \phi^4$$

- ullet \mathbb{Z}_2 symmetry: $\phi \to -\phi$
- Critical point: Ising model

Goal: study high-energy states at both weak and strong coupling

Hamiltonian Truncation

- Old idea (Rayleigh-Ritz) for approximating energy eigenstates
- Basic steps:
 - 1) Discretize Hilbert space
- 2) Truncate to finite-dimensional subspace
- 3) Diagonalize truncated Hamiltonian

Hamiltonian Truncation

- Old idea (Rayleigh-Ritz) for approximating energy eigenstates
- Basic steps:
 - 1) Discretize Hilbert space
- 2) Truncate to finite-dimensional subspace
- 3) Diagonalize truncated Hamiltonian

Conformal Truncation

$$\mathcal{L}_0 = (\partial \phi)^2$$

1) Discretize: Hilbert space of UV CFT = Fock space of massless scalar

$$|p_1,\ldots,p_n\rangle$$
 $(n=0,1,2,\ldots)$

Span Hilbert space with basis of polynomials

$$|\Psi_{\mathbf{k}}(p)\rangle \sim \int dp_1 \cdots dp_n \,\delta(p-\sum_i p_i) p_1^{k_1} \cdots p_n^{k_n} |p_1, \dots, p_n\rangle$$

Equivalent to basis of local CFT operators

$$|\Psi_{\mathbf{k}}(p)\rangle \Leftrightarrow \mathcal{O} \sim \partial^{k_1} \phi \cdots \partial^{k_n} \phi$$

Use UV conformal symmetry to organize Hilbert space

Conformal Truncation

$$\mathcal{L}_0 = (\partial \phi)^2$$

2) Truncate: restrict to polynomials with degree $\Delta \leq \Delta_{\max}$ (low-dimension operators)

$$|\Psi_{\mathbf{k}}(p)\rangle \Leftrightarrow \mathcal{O} \sim \partial^{k_1} \phi \cdots \partial^{k_n} \phi$$

Conformal Truncation

$$\mathcal{L} = (\partial \phi)^2 - m^2 \phi^2 - g \phi^4$$

3) Diagonalize: construct Hamiltonian from Fock space expansion and diagonalize numerically

 $\Delta_{\rm max} = 40$ \longrightarrow ~20,000 states, \lesssim 1 hour

 $M_{\alpha}^2 \equiv E_{\alpha}^2$

10/26

High-Energy Eigenstates

What about all these states?

High-energy states are strongly-coupled

$$\langle n \rangle \gg rac{1}{g}$$

Macroscopic features match free theory, but microscopic details are chaotic

Distribution of Eigenstates

12/26

Volume of Eigenstates

- Conformal truncation → Infinite volume
- Volume set by states themselves

$$|E_{lpha}
angle \sim$$
 Finite-sized "star"

Measure intrinsic volume with form factors

$$F_{\mathcal{O}}(q) \equiv \langle E_{\alpha}(p)|\mathcal{O}(0)|E_{\alpha}(p')\rangle$$

$$F_{\mathcal{O}}(q) \sim 1 - \langle r^2 \rangle q^2 + \dots$$
 Volume $V \equiv \sqrt{\langle r^2 \rangle}$

Volume from Form Factor

Truncation-dependent volume: $V \equiv \sqrt{\langle r^2 \rangle} \sim \Delta_{\rm max}$

$$V \equiv \sqrt{\langle r^2 \rangle} \sim \Delta_{\rm max}$$

$$\phi \overleftrightarrow{\partial}^k \phi \Rightarrow V \sim k$$

Volume from Form Factor

Energy-dependent volume: $V \equiv \sqrt{\langle r^2 \rangle} \sim \frac{\Delta_{\rm max}}{E}$

$$V \equiv \sqrt{\langle r^2 \rangle} \sim \frac{\Delta_{\text{max}}}{E}$$

Energy density:

$$arepsilon \equiv rac{E}{V} \sim rac{E^2}{\Delta_{
m max}}$$

Density of States

 $s \equiv \frac{1}{V} \log \rho$ g = 1.6

Expectation Values

$$\mathcal{V} \equiv \mathcal{O}_1 - \mathcal{O}_2 = \text{Virasoro primary}$$

CFT prediction:
$$\langle \mathcal{V} \rangle_{\beta} = 0$$

Macroscopic features match free theory as $\varepsilon \to \infty$

Expectation Values

High-energy eigenstates satisfy ETH: $\langle E_{\alpha}|\mathcal{O}|E_{\alpha}\rangle \to \langle \mathcal{O}\rangle_{\beta}$

$$\langle E_{\alpha}|\mathcal{O}|E_{\alpha}\rangle \to \langle \mathcal{O}\rangle_{\beta}$$

$$\mathcal{O}_1 = \frac{5}{8\pi} (\partial^2 \phi)^2$$
$$\mathcal{O}_2 = (\partial \phi)^4$$

$$g = 1.6$$

Eigenvalue Spacing

q = 1.6

Eigenvalue Statistics

 $\eta \equiv \frac{||P - P_{\text{Poisson}}||}{||P - P_{\text{Wigner-Dyson}}||}$

Matches RMT for any nonzero coupling

$$c_{iE} \equiv \langle i|E\rangle \longrightarrow P(|c|^2)$$

$$c_{iE} \equiv \langle i|E\rangle \longrightarrow P(|c|^2)$$

No evidence of scars at strong coupling

$$c_{iE} \equiv \langle i|E\rangle \longrightarrow P(|c|^2)$$

Scar States

What are these non-RMT states?

g = 0.13

Scar States

Can categorize by expectation values

g = 0.13

Scar States

g = 0.13

Summary

- QFTs are chaotic (even at weak coupling)
- High-energy dynamics governed by ETH and RMT
- High-energy states obtained numerically are "healthy"
 - → average behavior converges quickly and matches ETH
- Existence of scar states near threshold at weak coupling
- No evidence of scars at strong coupling

Future Directions

- Further study ETH (off-diagonal matrix elements)
- Extract hydrodynamic features from SFF Winer, Swingle '20
- Continue to thermal 2-pt functions → Hydrodynamics, transport
- Extend to other (higher-dimensional) QFTs
- Connect near-threshold scar states to semiclassical predictions
 Rubakov '95, Son '95
- Implications for "approximate CFTs"?

Belin et al '23

You tell me!

BACKUP SLIDES

Finite-Volume Spectrum

$$\mathcal{L} = (\partial \phi)^2 - m^2 \phi^2 - g \phi^4$$

High-energy spectrum is chaotic at finite coupling (≠ UV CFT)

$$g = 4$$
 $E_{\text{max}} = 19$ $2\pi R = 10$

No Visible Scars at Strong Coupling

Spectral Form Factor

Thermodynamics

Canonical ensemble:
$$Z = \sum_{\alpha} e^{-\beta E} \longrightarrow \varepsilon \sim \frac{1}{V} \partial_{\beta} \log Z, P \sim \frac{1}{\beta} \partial_{V} \log Z \longrightarrow \boxed{c_{s}^{2} \equiv \left(\frac{\partial P}{\partial \varepsilon}\right)_{V}}$$

g = 1.6

Expectation Values

ETH: $\langle E|\mathcal{O}|E\rangle \sim \langle \mathcal{O}\rangle_{\beta}(\varepsilon)$

High-Energy Eigenstates

• Random matrix theory:

Eigenvalues in a small energy window essentially match those of a random matrix

• Eigenstate thermalization hypothesis:

Expectation values are smooth functions of energy with small random variations

$$\langle E_{\alpha}|\mathcal{O}|E_{\beta}\rangle = \mathcal{O}(\bar{E})\delta_{\alpha\beta} + e^{-S(\bar{E})/2}g_{\mathcal{O}}(\bar{E},\Delta E)R_{\alpha\beta}$$
 Random matrix