Based on work done in collaboration with: Luca Delacrétaz, Liam Fitzpatrick, Ami Katz arXiv: 2105.02229, 2207.11261

Thermalization and Chaos in QFT

Matthew T. Walters Heriot-Watt University

Quantum Chaos @ Bernoulli Workshop, 2/10/24

Big Picture

2 / 26

Quantum Mechanics + Special Relativity = **Quantum Field Theory**

Big Picture

2 / 26

How does short-distance data… Δ_i *, C_{ijk}*

…determine long-distance dynamics? m_i^2 , $\langle O(t)O(0)\rangle$, $\mathcal{M}(s,t)$, ...

Quantum Mechanics + Special Relativity = **Quantum Field Theory**

Goal for Today

3 / 26

What are the dynamics of high-energy states

 $E_\alpha, \langle \psi(t) \psi(0) \rangle, \langle E_\alpha | \mathcal{O} | E_\alpha \rangle, \ldots$

Punchline

- QFTs are generically **chaotic** O
- O
- **sensitive** to deformation O
- **Hypothesis (ETH)** and **Random Matrix Theory (RMT)** O
- States near **multi-particle thresholds** violate ETH, with **semiclassical description** O

 Naive intuition: UV states are described by CFT (relevant deformation) **Macroscopic** features match **CFT**, but **microscopic** features are

4 / 26

High-energy dynamics governed by **Eigenstate Thermalization**

- **Model: 1+1d** ϕ^4 theory \circ Model: 1+1d ϕ^4
- **Method: Conformal truncation** ∘
- **Understanding high-energy states** ∘
- **Thermalization and chaos in QFT** ∘
- **"Scar" states at weak coupling** ∘

5 / 26

- **Model: 1+1d** ϕ^4 theory \circ Model: 1+1d ϕ^4
- **Method: Conformal truncation** ∘
- **Understanding high-energy states** ∘
- **Thermalization and chaos in QFT** ∘
- **"Scar" states at weak coupling**

∘ Inermalization and chaos in QFT
∘ "Scar" states at weak coupling

5 / 26

Model: $1 + 1$ **d** ϕ^4 **theory**

$$
\mathcal{L} = (\partial \phi)^2 - m^2 \phi^2 - g \phi^4
$$

$$
\bullet \mathbb{Z}_2
$$
 symmetry: $\phi \rightarrow -\phi$

∘ Critical point: **Ising model**

Goal: study high-energy states at both weak and strong coupling

Model: $1 + 1$ **d** ϕ^4 **theory**

$$
\mathcal{L} = (\partial \phi)^2 - m^2 \phi^2 - g \phi^4
$$

$$
\bullet \mathbb{Z}_2
$$
 symmetry: $\phi \rightarrow -\phi$

∘ Critical point: **Ising model**

Goal: study high-energy states at both weak and strong coupling

6 / 26

Hamiltonian Truncation

- Old idea (**Rayleigh-Ritz**) for approximating energy eigenstates O
- Basic steps: O
- 1) **Discretize** Hilbert space
- 2) **Truncate** to finite-dimensional subspace
- 3) **Diagonalize** truncated Hamiltonian

7 / 26

Hamiltonian Truncation

- Old idea (Rayleigh-Ritz) for approximating energy eigenstates
- **Basic steps:**
	- 1) Discretize Hilbert space
- 2) Truncate to finite-dimensional subspace
- 3) Diagonalize truncated Hamiltonian

1) **Discretize:** Hilbert space of UV CFT = Fock space of massless scalar

 $|p_1, \ldots, p_n\rangle$

Span Hilbert space with basis of **polynomials**

Conformal Truncation

$$
|\Psi_{\mathbf{k}}(p)\rangle \sim \int dp_1 \cdots dp_n \, \delta(p-\sum_i p_i) \overline{p_1^{k_1} \cdots p_n^{k_n}} p_1, \ldots, p_n \rangle
$$

- Equivalent to basis of local **CFT operators** $|\Psi_{\bf k}(p)\rangle$
- **Use UV conformal symmetry to organize Hilbert space**

 $\mathcal{L}_0 = (\partial \phi)$

$$
(n=0,1,2,\ldots)
$$

$$
\mathcal{D}\thicksim\partial^{k_1}\phi\cdots\partial^{k_n}\phi
$$

8 / 26

2) **Truncate:** restrict to polynomials with degree $\Delta \leq \Delta_{\text{max}}$ (low-dimension operators)

Conformal Truncation

 $9/ 26$

 $|\Psi_{\mathbf{k}}(p)\rangle \Leftrightarrow \mathcal{O} \sim \partial^{k_1} \phi \cdots \partial^{k_n} \phi$

 $\mathcal{L}_0 = (\partial \phi)$

Conformal Truncation

3) Diagonalize: construct Hamiltonian from Fock space expansion and diagonalize numerically

 $\mathcal{L} = (\partial \phi)^2 - m^2 \phi^2 - g \phi^4$

 $10/26$

High-Energy Eigenstates

What about all these states?

High-energy states are **strongly-coupled**

$$
\left|\langle n\rangle\gg\frac{1}{g}\right|
$$

11 / 26

Macroscopic features match **free** theory, but **microscopic** details are **chaotic**

Distribution of Eigenstates

 $g=1.6$

Volume of Eigenstates

- Conformal truncation \rightarrow Infinite volume • Conformal truncation →
- Volume set by **states themselves** O

 $F_{\mathcal{O}}(q) \sim 1 - \left(\frac{r^2}{q^2} + \dots\right)$ **Volume** $V \equiv \sqrt{\langle r^2 \rangle}$

13 / 26

∘ Measure intrinsic volume with **form factors**

 $F_{\mathcal{O}}(q) \equiv \langle E_{\alpha}(p)|\mathcal{O}(0)|E_{\alpha}(p')\rangle$

Volume from Form Factor

 $\textbf{Truncation-dependent volume: } \left| V \equiv \sqrt{\langle r^2 \rangle} \sim \Delta_{\text{max}} \right| \hspace{1em} \phi$

 $g = 1.6$

 $\overleftrightarrow{\Delta}$ \hat{O} *k* $\phi \Rightarrow V \sim k$

Volume from Form Factor

Density of States

 $s \equiv$

16/26

Expectation Values

Macroscopic features match **free theory** as *ε* → ∞

Expectation Values

High-energy eigenstates s

 $g = 1.6$ ${\cal O}_1 = \frac{5}{8\pi} (\partial^2\phi)^2$ $\mathcal{O}_2 = (\partial \phi)^4$

satisfy **ETH**:
$$
\langle E_{\alpha} | \mathcal{O} | E_{\alpha} \rangle \rightarrow \langle \mathcal{O} \rangle_{\beta}
$$

Eigenvalue Spacing

 $s_\alpha \equiv$ $E_{\alpha+1}$ – $g=1.6$

Eigenvalue Statistics

Matches RMT for **any nonzero coupling**

 $c_{iE} \equiv \langle i|E \rangle \longrightarrow P(|c|^2)$

 $21/26$

 $c_{iE} \equiv \langle i|E \rangle \longrightarrow P(|c|^2)$

 $c_{iE} \equiv \langle i|E \rangle \longrightarrow P(|c|^2)$

 $c_{iE} \equiv \langle i|E \rangle \longrightarrow P(|c|^2)$

No evidence of scars at strong coupling

Scar States

 $g = 0.13$

What are these non-RMT states?

Scar States

 $q = 0.13$

Can categorize by expectation values

Scar States

 $g = 0.13$

- QFTs are **chaotic** (even at weak coupling) O
- High-energy dynamics governed by **ETH** and **RMT** O
- High-energy states obtained numerically are "healthy" O
- → average behavior **converges quickly** and **matches ETH**
- Existence of **scar states** near threshold at **weak coupling** O
- **No evidence** of scars at **strong coupling** O

Future Directions

- Further study ETH (**off-diagonal** matrix elements) O
- Extract **hydrodynamic** features from SFF O Winer, Swingle '20
- Continue to thermal 2-pt functions → Hydrodynamics, transport • Continue to thermal 2-pt functions →
- Extend to other (**higher-dimensional**) QFTs O
- Connect near-threshold scar states to **semiclassical predictions** O Rubakov '95, Son '95
- Implications for "**approximate CFTs**"? O
- **You** tell me! O

BACKUP SLIDES

Finite-Volume Spectrum

$$
\mathcal{L} = (\partial \phi)^2 - m^2 \phi^2 - g \phi^4
$$

$$
g = 4 \quad E_{\text{max}} = 19 \quad 2\pi R = 10
$$

at finite coupling (≠ **UV CFT)**

No Visible Scars at Strong Coupling

 $g = 1.6$

Spectral Form Factor

 $SFF(t) \equiv$ 1 *N*² \blacktriangledown α,β $g = 1.6$

Thermodynamics

 $q = 1.6$

Canonical ensemble: $Z = \sum e^{-\beta E} \longrightarrow \varepsilon \sim \frac{1}{V} \partial_{\beta} \log Z, P \sim \frac{1}{\beta} \partial_{V} \log Z \longrightarrow \left(c_s^2 \equiv \left(\frac{\partial P}{\partial \varepsilon} \right)_V \right)$

Expectation Values

High-Energy Eigenstates

Eigenvalues in a small energy window essentially match those of a random matrix

Eigenstate thermalization hypothesis: Expectation values are smooth functions of energy with small random variations

