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Bootstrapping Chaos?



This Talk:

Systematics of the Bootstrap for 
1d Conformal Theories



• Local 1d CFTs are trivial: topological. 
• But many interesting examples still exist: we demand existence of global 

Ward identities for conformal algebra, but not local (i.e. no “stress 
tensor”). 

• Important Applications:

• 1D critical phenomena (long range models)
• Conformal line defects
• QFT in AdS2 (including flat space limit)

Can we probe interesting, chaotic, quantum systems by studying 1d 
CFTs?

1d CFTs?



QFT in AdS

• We put QFT in a box: anti-de Sitter 
space.

• Poincare symmetry of QFT in d+1 
deformed to SO(d,2) – same number 
of generators.

• These are the symmetries of a 
conformal field theory in d
dimensions.

• Pushing bulk operators to the AdS
boundary at spatial infinity defines 
insertions of local boundary 
operators – CFT operators.



Radial quantization

CFT scaling dimension Energy in AdS units



Boundary CFT 
operator insertions

Bulk QFT

Scattering
• We can set up a bulk scattering experiment by sourcing with boundary 

insertions.

Boundary CFT 
operator insertions



• Large AdS radius recovers flat space scattering.

Scattering

• CFT operators 
with large 
scaling 
dimension!



Simple example: free theory

• Free field in AdS2:

• Correlators are those of mean field theory:



Simple example: free theory
• Spectrum of the theory = collection of scaling 

dimensions

• State operator correspondence gives a complete 
description of the eigenstates of the 
Hamiltonian. We merely write all `words’ with 
alphabet:

• To each such word there is an eigenstate. E.g.:

• The total number of such states grows 
exponentially with sqrt of energy. But in any 
correlator only a polynomially growing set of 
states appears.



• We will motivate the 1d CFT bootstrap in a slightly unusual way.

• Consider an (infinite dimensional) Hilbert space containing two sites. 
Formally we demand there exists P commuting with Hamiltonian,

• A local operator on the Hilbert space is a pair:

such that the locality condition holds:    (                           )

Bootstrapping locality
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Bootstrapping locality

L R

• Intuition: there exists 
Hamiltonians for which the two 
sites are `far away’.

• The above equation constrains 
both allowed (i.e. local) 
Hamiltonians and operators 
matrix elements.

• General solution: `fill in’ the gap 
between the two sites with a local 
QFT.



Bootstrapping locality

L R

• For a 1D CFT we `fill in’ the space 
with a QFT in AdS2.

• Thanks to state operator
correspondence, the above locality 
equation can be shown to be 
equivalent to associativity of the 
OPE: i.e. the crossing equation.

• The conformal bootstrap is thus this 
locality problem in the special case 
where the Hilbert space has 
additional (conformal) symmetry.

• It constructs simultaneously 
Hamiltonian and operators 
satisfying locality.



Bootstrapping locality

L R

• How does locality/crossing imply 
(or not) chaotic spectra?



Correlator Bootstrap
• Goal: determine correlators of local operators.

generic operator in the CFT



OPE associativity

OPE s-channel OPE t-channel



OPE associativity

Bootstrap (locality) Equation

OPE s-channel OPE t-channel



The Bootstrap Program

• Proposal: above determine all allowed sets of sphere CFT data 

• Sufficient to consider 4 pt functions - but must consider all of them (∞)

• Bootstrap: extracting maximal amount of information from these 
equations.

Polyakov, ‘74
Ferrara, Grillo, ‘73



Two truncations
Bootstrap methods involve two kinds of truncations:

• Fundamental
• Truncate set of OPEs to consider

• Technical
• Truncate constraints arising from a fixed set of OPEs

• Both truncations imply that some information is lost.



Fundamental truncation

• We can consider only a finite set of correlators and associated 
bootstrap equations

• Are such equations sufficient for determining the correlators*?

*under finite set of assumptions – enough to specify 
theory of interest



Fundamental truncation

• If true, generically it would tell us partial OPE information 
but full CFT spectrum* (!)

*modulo symmetry selection rules

OPE

• That is, even a single correlation function generically 
knowns about the full spectrum of the theory...



Fundamental truncation

• Density of states

• Left: CFT spectrum* 
corresponding to single 
scalar field in AdS2

*primary operators 
perturbed with random 
anomalous dimensions to 
lift degeneracies



Fundamental truncation

• In fact, bootstrap equations have insufficient resolving power 
to uniquely determine full OPE (under finite assumptions). 

• Constraints are sufficient only to uniquely solve for special 
solutions to the bootstrap equations we call extremal. 

• Such solutions are uniquely determined by being the sparsest 
possible consistent with finite assumptions. 

• In particular, they have a constant density of operators above 
some scale and hence are generically unphysical (i.e. cannot be 
embedded into full-fledged CFTs).

• Bootstrap works only if actual CFT correlators of interest are 
sufficiently close to extremal ones.



Fundamental truncation
Actual correlator

Input



Fundamental truncation

Captures coarse grained 
features: moments of 
OPE density.

Captures detailed features 
of spectrum. Small shifts 
in true values: UV/IR 
decoupling

Extremal correlatorActual correlator

Input



Fundamental truncation
• Adding bootstrap equations leads to denser extremal solutions: 

better approximations to the actual OPE.

Increasing number of bootstrap equations (i.e. more correlators)

Full solution
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Fundamental truncation
• Adding bootstrap equations leads to denser extremal solutions: 

better approximations to the actual OPE.

Increasing number of bootstrap equations (i.e. more correlators)

…

Full solution



Fundamental Truncation

• Physical correlators:

• OPE content consistent with infinite set of bootstrap equations

• Extremal correlators: 

• OPE content consistent with chosen finite set of bootstrap equations

• Sparsest possible under finite number of assumptions

• Approximate some desired CFT

• Determine rigorous bounds (which they saturate) on general CFTs (as 
we will see)

How to construct them? 

In summary:



Technical truncation

• Each individual bootstrap equation imposes infinitely many 
constraints on an infinite set of data.

• We must solve these constraints to determine the extremal solution.

• In practice, generically only a finite but large subset of constraints 
can be solved. 

• Choice of constraint basis is critical: a good choice of basis allows for 
an efficient, and arbitrarily good determination of the full extremal 
correlator. 



Technical truncation

Increasing constraints (from fixed set of equations)

…

…
Extremal solution

Simplest solutions consistent with constraints

Approach to infinity strongly dependent on choice of constraint basis



The extremal bootstrap program

…
…

…

……

…
…

…

…

…

…
Fundamental (non-convex, hard)

Technical
(convex, 
‘easy’) …



The extremal bootstrap program

…
…

…

……

…
…

…

…

…

…
Fundamental (non-convex, hard)

Technical
(convex, 
‘easy’) …

Solution 
is at 
hand



Single equation

• Linear constraints..



Introducing bases

• Uncountable constraints on uncountable variables..
• Introduce countable basis:

Linear functionals dual to basis elements



Introducing bases

• Uncountable constraints on uncountable variables..
• Introduce countable basis:

• Paradigmatic example: Taylor series around chosen point

Rattazzi, Rychkov, Tonni, Vichi ‘08



Functional Bootstrap Equations



Extremal bases
• Starting from general decomposition,

we choose:

… with 
to be determined

Mazac, MP ‘18



Extremal bases

• Thus duality for such bases has direct consequences on the shape of the 
functional actions (double zeros at specific dimensions). 

• Assume that bases of the form below exist:

… with 
to be determined

• The duality conditions become:

Mazac, MP ‘18



Extremal bases

• Functional Bootstrap equations:  

• Assume that bases of the form below exist:

… with 
to be determined

… with duality 



Bounds and extremality
• Duality conditions naturally lead to bounds



Bounds and extremality

• This picture also makes clear that the crossing equation has `finite 
resolution’: cannot resolve OPE density inside O(1) sized-window 



Extremal bases

• Motivation: 
• These bases can diagonalize bootstrap equations, allowing us to    

construct extremal solutions. 



Extremal bases

Dimensions appearing in 
the basis, determined 
implicitly by inputs

Inputs, label solution/basis

• Motivation: 
• These bases can diagonalize bootstrap equations, allowing us to 

construct extremal solutions.



Extremal solutions:
• sparser
• maximize OPE (=> 

bounds)

Hyperplane equations

Bounds and extremality



Example: the GFF bases
• Example: generalized free fermion. In this case input is identity.

• Simple enough choice that functionals can be explicitly determined.

• Any other basis can be expressed in terms of this one.
Mazac, Paulos ‘18



Example: the GFF bases

• Simple enough choice that functionals can be explicitly determined.

• Any other basis can be expressed in terms of this one.
Mazac, Paulos ‘18

• Example: generalized free boson. In this case inputs are identity and an 
operator with undetermined OPE but dimension  



Hybrid Bootstrap

• These bases can be used as building blocks to express any other extremal 
solution efficiently by a hybrid numerical/analytic algorithm.

• The algorithm is possible because extremal spectra asymptote to a boson 
or a fermion beyond a certain scale         (problem dependent).

• The result is a characterization of extremal solutions:

1. Excluding inputs, the number of states is the same as for a free 
correlator.

2. Anomalous dimensions of those states decay polynomially with
energy (typically 1/E^2)

3. The solution asymptotes to a free fermion or boson depending on 
essentially the number of fixed inputs.

Girault, MP, Suchel, WiP



Multiple correlation functions.

• The construction of general extremal solutions is greatly simplified by 
knowledge of one such solution and the associated basis of constraints.

• The strategy for a mixed system of correlators is to again construct such a 
basis.

• The basis is dual to a system of correlators in the tensor product theory of 
N generalized free fields.

• Sum rules most easily derived in the Polyakov bootstrap picture

Ghosh, Kaviraj, MP ‘23

Polyakov ‘74
Dey, Kaviraj, Ghosh,Gopakumar, Sinha, Sen..



Mixed Polyakov Bootstrap

Conformal block:

• Kinematics: think of operators as having extra quantum numbers 
describing orientation in OPE space:

=



Mixed Polyakov Bootstrap

=

=
!

+ +

+ Relevant AdS contact interactions



Mixed Polyakov Bootstrap
• Using the OPE on this expansion leads to an infinite set of sum rules 

satisfied by general CFTs

• Functional actions above satisfy duality conditions (which now involve 
dimension and OPE orientation)

• Sum rules diagonalized by tensor product theory solution, determining 
all CFT data there.

Functionals can also be 
written as matrices 
contracted with



Example: maximize OPE of            , theory with Z2 symmetry

Extremal solutions, mixed correlators
Z2 even, parity even sector (0+)



Extremal solutions, mixed correlators
Z2 even, parity even sector (0+)



Comments and 
questions…



The extremal bootstrap program

…
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…
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…
…
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Technical
(convex, 
‘easy’) …



Systematics

• The bootstrap is the construction of a Hamiltonian supporting local 
operators, and the operators themselves.

• Locality is implemented gradually as we include more correlation 
functions, recall:

• This requires fine-grained cancellations between many terms.

• From this perspective, it seems miraculous that local Hamiltonians can be 
chaotic..



Systematics

• The extremal functional picture provides us with a simple picture of 
expected bootstrap spectra:

• Including constraints from an ensemble of four point functions, one first 
imagines treating each external operator as a separate free field.

• One then constructs all possible double traces of such fields

• A generic extremal solution to the crossing constraints of all such 
correlators will have all such operators appearing in all OPEs (modulo 
symmetry constraints).

• This immediately tells us that the OPE density of states will grow linearly 
for any extremal solution to crossing – very far from the expected 
exponential growth.

This implies that bootstrapping more correlation functions has rapidly 
diminishing returns… (good and bad news)



Systematics

Increasing number of bootstrap equations (i.e. more correlators)

…

Full solution



Bootstrapping chaos?

Extremal 
solutions

Solution with 
smeared UV?

Exact spectrum



Bootstrapping chaos?

Solution with 
smeared UV?

Exact spectrum

• How can we characterize the scale at 
which the spectrum is ``sufficiently’’ 
complicated?

• This scale can be set parametrically 
high. E.g. take an integrable model 
with small integrability breaking 
deformation,

Then for which E does chaotic statistics       
kick in as opposed to Poisson?



Bootstrapping chaos?

Solution with 
smeared UV?

Exact spectrum

• For QFTs in AdS, can take free theory 
with relevant operator with small 
coupling. Perturbation theory breaks 
down for large operators:

• OPEs can’t save you: similar 
breakdown there + exponential 
number of states…

• But it should still be possible to say 
something: new saddles for the action 
as for large charge story…?

• Can this helps us understand how to 
perform the correct smearing?



Outlook

• An extremal picture of the bootstrap program:

• Extremal solutions naturally lead to bounds which universally 
hold for any CFT. Conversely, all bounds are saturated by extremal 
solutions. But notion independent of unitarity.

• Extremal basis manifest UV/IR decoupling – double zeros at 
expected UV spectrum – numerics ``converges’’

• The same equations can be used for analytic bootstrap and numeric 
bootstrap – clean CFT identification of numerical results, 
possibility of rigorous hybrid bootstrap, etc.



Outlook

• Lots to do:

• Beat the technical to tackle fundamental: efficiently exploring 
the extremality landscape

• Can we reach the chaos scale? How to ``UV complete’’? Can 
we exploit multipoint crossing?

• Analytic understanding of extremality via Basicity? Classify 
solutions? Integrable 1d CFTs?

• Extremality in higher D?

• Many applications…



Thank you!



Difficulties and issues

……

Fundamental (non-convex, hard)

• As we add extra correlators, must perform searches in high dimensional 
spaces.

• Technologies such as navigator and skydiving in principle settle this (?). 

• Bottleneck: computation of functional actions. But efficient algorithms 
exist already. Computations much less demanding in precision.

• Unclear as of yet how far in number of correlators we will be able to 
push. Preliminary goal: 



Difficulties and issues

……

Fundamental (non-convex, hard)

• As we add extra correlators, there are extra finite degrees of freedom.

• Equivalently, extremal solutions require a finite but growing set of 
assumptions.

• Origin: huge space of solutions coming from QFTs in AdS

• Must input information about desired set of theories. It seems this can 
be achieved by demanding existence of dual AdS local operators. 

• Numerically: larger semidefinite programs combining OPE and BOE 
information

Levine, MP ’23
Meineri, Penedones, Spirig ‘23



Application in D=2



Hybrid Bootstrap
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Hybrid Bootstrap

• Schematically we run a loop:

1. Solve extremality conditions numerically to get an approximation to 
the first N operators in the extremal solution.

2. Use the results to analytically predict the data for remaining 
operators.

3. Use this information to find an improved functional basis* and re-
solve the numerical problem for the first N operators.

• Depending on accuracy with which how 2 and 3 are implemented one 
can improve power law numerical convergence in N by any desired 
amount.

*Key step where our approach differs from N. Su ‘22



Hybrid Bootstrap

• Output is:

• An approximation for all CFT data in the extremal solution.

• A set of extremal functionals which give rigorous bounds on any CFT
consistent with the initial fixed set assumptions (saturated by 
associated extremal solution)

• Example: bootstrap the extremal solution with fixed data:

• Identity

• Operator with dimension



Extremal bases

Plug in basis decomposition



Extremal bases

Allowed (OPE coefficients)

Disallowed, must 
cancel



Extremal bases



Extremal bases

freely chosen
(label extremal 
solution)

• These Extremality Conditions are now implicit equations for 

• Functional basis and extremal solution can be constructed 
simultaneously by:

• extremality conditions

• duality conditions

with


