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Can chaos enable the classical simulation
of quantum systems?



Can chaos enable classical simulation
of quantum systems?

it depends on what we mean by “simulation”
and “chaos”



Classical simulation of quantum circuits

Given a unitary U and an initial state ρ (typically  |0n⟩⟨0n|)

➢ Strong simulation: approximate UρU †

➢ Weak simulation: 

○ Sample from the Born distribution of UρU†

○ Given an observable O, estimate Tr[OUρU †]



Classical simulation of quantum circuits

Given a unitary U and an initial state ρ (typically  |0n⟩⟨0n|)

➢ Strong simulation: approximate UρU †

➢ Weak simulation: 

○ Sample from the Born distribution of UρU†

○ Given an observable O, estimate Tr[OUρU †]

out of reach for PP

feasible with PP for locally 
scrambling  circuits

feasible with PP for locally 
scrambling  noisy circuits

PP = Pauli Propagation, a family of simulation algorithms



An extreme case: Haar-random state

➢ Sampling from the Born distribution of a Haar-random state is “classically hard”
Still true for the output of random circuits
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An extreme case: “highly random” states

➢ Sampling from the Born distribution of a Haar-random state is hard
Still true for the output of random circuits
⇒ Experimental demonstration of quantum supremacy

➢ Any expectation value will be close to zero!



Chaos and scrambling

➢ Quantum chaos “scrambles” local information quickly across an 
entire system (e.g. black holes)

➢ The time evolution of the system is a pseudo-Haar-random  process

(H chaotic Hamiltonian, W local operator)

Roberts, Daniel A., and Beni Yoshida. "Chaos and complexity by design." 
Journal of High Energy Physics 2017.4 (2017): 1-64.



Chaos and Random Quantum Circuits

Infinite-depth random circuits are Haar-random

………



Probing chaos

H Hamiltonian
V, W local operators

(group commutator)
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H chaotic Hamiltonian
V, W local operators

global, random 
operator
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Probing chaos with Out-of-Time-Order 4-point functions
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Probing chaos with Out-of-Time-Order 4-point functions

H chaotic Hamiltonian
V, W local operators

non-chaotic

chaotic

what’s in the middle?



OTO functions and 2-designs

The OTO function contains only second moments of the chaotic Hamiltonian
⇒ We can approximate the chaotic evolution with a unitary 2-design 



Chaos and Random Quantum Circuits, II

Linear-depth random circuits are approximate 2-designs

………



Chaos and Random Quantum Circuits, III

Random single qubit gates suffices for highly chaotic behaviour

Belyansky, Ron, et al. "Minimal model for fast scrambling." Physical review letters 125.13 (2020): 130601.



Locally scrambling circuit

● All single-qubit gates sampled i.i.d. from local 2-designs
● Arbitrary entangling layers Ui’s



The problem

Given a locally scrambling quantum U, 
can we approximate Tr[OUρU†] with a classical computer?



The problem

Given a locally scrambling circuit U, 
can we approximate Tr[OUρU†] with a classical computer?

Yes! 
It takes poly(n) time, for any constant precision



Motivations

➢ Many physical processes are approximately locally scrambling

➢ Variational quantum circuits are often initialized at random

➢ Understand why the Pauli Propagation algorithm works so well in 
practice 
– This is a “simple” model in which we can prove things



The Heisenberg picture

Tr[OUρU†] = Tr[U†OUρ]

→ Compute (approximately) U†OU and project it onto ρ
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The Heisenberg picture

Tr[OUρU†] = Tr[U†OUρ]

→ Compute (approximately) U†OU and project it onto ρ
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Tree-like representation of Quantum Computation



A step back: classical Randomized Computation



A step back: classical Randomized Computation

Expected values efficiently computable by Monte-Carlo sampling paths!



➢ Computing exactly or Monte Carlo sampling Pauli 
paths is classically intractable

➢ Can we find a sub-tree which carries most of the 
useful information?



Are all Pauli paths created equal?

Pauli-weight: number of non-identity terms in a Pauli operator

ex. weight(IXYIZ) = 3
weight(IIIII) = 0

Paths with high-weight Paulis can be truncated if

● the circuit is noisy
● the circuit is locally scrambling, 

and we want to estimate expectation values



Tree-like representation of Quantum Computation
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c2 + d2 =1
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The noisy case

● Single-qubit depolarizing noise

● Noisy circuits



The noisy case

Paths containing high-weight  Paulis are exponentially  
suppressed!



The noisy case

‘22

‘24

‘23



The noisy case

‘22

‘24

‘23

locally scrambling circuits

parametrized circuits

arbitrary circuits with input 
sampled from a 1-design



The noisy case

‘22

‘24

‘23

locally scrambling circuits

parametrized circuits

arbitrary circuits with input 
sampled from a 1-design



However, the same simulation algorithm works well 
on “typical” noiseless circuits

simulates



However, the same simulation algorithm works well 
on “typical” noiseless circuits

simulates



2-designs in the Heisenberg picture

Given a unitary U sampled from a 2-design, we have for any non-identity P



The single-qubit case



Scrambling vs Expectation values

● Without randomness

● With randomness



Locally scrambling layer

Huang, Hsin-Yuan, Sitan Chen, and John Preskill. "Learning to predict arbitrary quantum processes." 
PRX Quantum 4.4 (2023): 040337.





A “weight-truncated” observable



“Weight-truncated” Pauli Propagation

All Paulis with weight > k are truncated
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“Weight-truncated” Pauli Propagation



“Weight-truncated” Pauli Propagation

➢ Error bound depends only on k

➢ Polynomial complexity for constant error 

➢ Easy to “certify” numerically
→ Experiments demonstrate faster convergence



2D Staircase Topology on 64 qubits

Zhang, Hao-Kai, Shuo Liu, and Shi-Xin Zhang. "Absence of barren plateaus in finite local-depth circuits with 
long-range entanglement." Physical Review Letters 132.15 (2024): 150603.



➢ The average error depends only on the squared amplitudes a2, b2, c2, d2 ...
➢ Then we can MC sample the Pauli tree!

Numerical certification: intuition



Experiments beyond our bounds



Classical Simulation via Pauli Propagation 

➢ Naturally harnesses noise and  scrambling 
➢ Not natively hindered by entanglement or circuit connectivity

Caveats
➢ Theoretical guarantees only in certain settings (uncorrelated gates)
➢ Not suitable for sampling from noiseless circuits



Related works on quantum chaos

➢ Von Keyserlingk, Curt, Frank Pollmann, and Tibor Rakovszky. "Operator backflow 
and the classical simulation of quantum transport."  Physical Review B 105.24 
(2022): 245101.

➢ Rakovszky, Tibor, C. W. Von Keyserlingk, and Frank Pollmann. 
"Dissipation-assisted operator evolution method for capturing hydrodynamic 
transport."  Physical Review B 105.7 (2022): 075131.

➢ Ramos-Marimón, Carlos, Stefano Carignano, and Luca Tagliacozzo. "Pauli weight 
requirement of the matrix elements in time-evolved local operators: 
dependence beyond the equilibration temperature."  arXiv:2409.13603 (2024).

Low-weight truncations strategies have been developed independently by 
several research communities!
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transport."  Physical Review B 105.7 (2022): 075131.

➢ Ramos-Marimón, Carlos, Stefano Carignano, and Luca Tagliacozzo. "Pauli weight 
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dependence beyond the equilibration temperature."  arXiv:2409.13603 (2024).

Low-weight truncations strategies have been developed independently by 
several research communities!

We need a unified framework!



Thanks!
Questions?


