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Why inflation?

Unitary dynamics incorporating more and more degrees of freedom
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» Cosmologically relevant. (Experiments: moveable qubits)
» Efficient simulation of lattice models.

» Generates scale invariance.

» Information propagation

Analoguous but different: QFT /error correction on AdS
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Information propagation through inflation

“Can we learn about the big bang?”
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» Two distinct phases of information, in which later time

observation can/cannot reveal initially injected information.

» We can go through a sharp “encoding transition” between
the phases by tuning a knob.
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Information propagation: a universe and a lab
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The transition is also between a measurement apparatus and a
quantum scrambler/encoder.
There is also another more subtle “purification” transition.
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Plan
» Background: Wigner's friend, classical objectivity, ...
» Setup: defining the phases
> Toy models on expanding trees [Ferté, XC, PRL+PRA 24]

» General “Harris criterion” for encoding transition (beyond
trees). [XC, to be written up]

> News & perspective
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Wigner's friend scenario [wigner 1961]

Wigner observes his friend measuring a qubit in a lab:
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Friend: Born's rule Wigner: unitary evolution
af 1)+ Bl L) — (al 1) +B81)) @ lapp.) —

| 1) with prob. |a|?
| 1) with prob. |B|?
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LBackground

Classical objectivity [zurek from 2000's]
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For the friend, the measurement outcome is objective: It is
retrievable from multiple records (computer, notebook, ...) and
can be agreed upon by many observers.

Wigner can attest the emergence of objectivity from the
multi-partite correlation established by the dynamics:

a|T>+5|¢>—>a-"g’->+ﬁ “E’" > (1)
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Classical objectivity vs encoding

The emergence of objectivity
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is qualitatively different from quantum thermalisation:

B8 Pal
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The two terms on the RHS are orthogonal but are locally
indistinguishable! The initial information is encoded.

Goal: Interpolate between objectivity and encoding.
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General setup

» Start with an EPR pair AR
| £ 7 between the input A (to be
= m measured) and a reference R
L H (record of input).

N

» Interaction between A and the lab
results in output bits E:
ViHas— Hp, VIV =1

» Can we learn the input (disentangle
R) by measuring a small fraction
I of the output?

v

R {pR,m}m
A

Zurek's “Quantum Darwinism” (QD) idea: objectivity is
accessibility from small fractions.
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Phases of information
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QD interm. encoding

The labisin ...
» a QD phase if pr, is pure
(with probability — 1)
» An encoding phase pg, is
maximally mixed.
> An intermediate phase if
otherwise.
Two possible transitions: encoding
and purification.
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Toy models exhibiting the transitions

“Mean-field” model defined on a dynamically expanding tree:
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Two similar variants:

» Random Clifford: o is random one-site Clifford with
probability J and identity otherwise. Exactly solvable.

» Deterministic: o = exp(—iJo¥m/4). Numerically tractable.

J = 0: GHZ state, perfect information broadcast.
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Phase diagram
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0 maximally mixed state
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Remarks

SIOS

interm. encoding J
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» The ensemble {pr m}m (weighed by Born's rule) becomes
independent of the relative fraction size |F'|/|E| in the
thermodynamic limit |E| — oo.

» Objectivity emerges in both QD and intermediate phases, in
which the detector is working with nonzero efficiency.

Next: focus on the encoding transition.
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Theory for the encoding transition

detector encoding j
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Consider inflationary dynamics in discrete space-time, also known
as "MERA". For definitiveness, focus on the following geometry:

[\/\/\/\/]

i (T )= 225

Here [:::] = unitary, and § =In2 so L o e’.

Main point: Such dynamics generates scale invariant states, and
allows to define scaling operator and scaling dimension. [Vidal et af]
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Operator dynamics and coarse-graining

Vi OV s = _
tt—ot Vt—dt Vie—st =

where G0 = g;:;' Uelr,
» Heisenberg picture goes back in time, so space shrinks, and
operator growth saturates.
> O+ O = VIOV implements the operator coarse-graining.

» Diagonalisation gives the spectrum of scaling operators with
scaling dimensions {A}

Vjt—JtOAV;t,t—zSt = 20, (4)
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Analytical result 1

“Harris criterion”
An expanding dynamics is in the encoding phase if and only if all
scaling dimensions (except for the identity operator) are large
enough:

VA >d/2 (5)

where d is the space dimension.
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Analytical result 1

“Harris criterion”
An expanding dynamics is in the encoding phase if and only if all
scaling dimensions (except for the identity operator) are large

enough:
VA >d/2 (5)

where d is the space dimension.

P Ajightest = d/2 allows to locate J..

» Same criterion (due to Harris) determines the relevance of a
disordered perturbation.

» Same criterion determines whether weak measurement on a CFT
ground state affects its long-distance correlations. [Garratt,
Weinstein, Altman] [Patil, Ludwig]
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Argument for the criterion

» Consider RG flow (¢t — t — dt) of the
ensemble {pr, m}

p o< e f“A(”C)OA(x)ddx, ua < 1 (6)

near the encoding transition.

» Sum over m: (p) x 1= (ua) =0.

» Causality = ua () short-range
correlated.

» Equivalent to the RG of random
perturbation (on a hypersurface):

u2
d<th> = (d—20)(wA)+... (7)
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Analytical result 2

Full counting and Gaussianity

The above Harris criterion applies as well if we only measure the
full counting statistics Y, O(x), where O is a generic operator.
In the encoding phase, the statistics tends to Gaussian.
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Another argument for the criterion
Let the input be in state |s). Can we infer it by measuring

O(t) = /OA(t,r)ddr?

Compare signal and noise:

0a(t)
(O1)), = v ~ etdeAt
signal
= (0(1)?)
——

noise

A > d/2 = OPE happens at u = 0: nontrivial operator cannot
reach input. (Hlgher moments satisfy Wick theorem.)
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Recent progress: Numerics beyond trees

Backward evolution method: exact direct sampling of
measurement results with space/time cost O(L).
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Challenge: purification transition

Vague intuition: a strong “impurity” (co-dimension 1) perturbation
tears spacetime (bra and ket) apart, creating random boundary
conditions.

[ dzu(2)O(x)
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av. purity of prm

Fleshing out the theory using BCFT?
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Preliminary example

In a Tomogana-Luttinger liquid (TLL) ground state, where we
measure cos(2¢), sin(2¢), purification can fail from prolification of
following defects:

g N+ T =
NI 40 S = ﬁ f(v¢)2d$d7'

Free energy cost < 1/(4K)In L.

For an expanding dynamics generating TLL,
1
4

o - 1
J¢purification _ — prencoding _ — [Garratt et al]
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