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Punchline

Temperature from eigenvalues
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Energy

Invert: Bc(E)

Canonical
Enera temperature

/T

B

Eigenvalue-based T vs eigenstate-based T

Temperature from full eigenstate

Compare

p=|Ey){(E,| with BH

pc=¢€
Which 8 minimizes distance?
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Punchline Eigenvalue-based T vs eigenstate-based T

: Temperature from full eigenstate
Temperature from eigenvalues

Compare
E=(my = MEH) p=|En){Es| with pc=ePH
= T tr(eBH) Which 3 minimizes distance?
ic minimizes distance?
Ej e_ﬁEjEj
T B Ej e FEi Be = arg;;nin dP (pv pC)
“Eigenstate temperature”
Invert: Bc(E)
g Canonical
1] ) temperature Be ~ B¢ for all systems
) Distance measure important
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P u n Ch | | ne CO ntl n u ed Eigenvalue-based T vs eigenstate-based T

Temp from traced eigenstate

Temperature from eigenvalues @
Spatial partition,

tr(e A H)
E=(H) = — =y C A = trg |E,)(E

tr(e—5H) ompare p* = trg(p) = trg |Ep ) ( En|

eBEE.
_ Zj e JE_EJ with pA =trg(e PH) or e Fhh
7 Zj e FE
Eneroy Which 8 minimizes distance?

Invert: B¢ (E) Bs = argmin d, (pA,Pé)
B

1T

Canonical “Subsystem temperature”

8

ey temperature




Punchline continued

Temperature from eigenvalues

_ _ tr(e " H)
E=(H) = tr(e—AH)
_ > e PHE
w Zje_ﬁEj

Energy

Invert: B¢ (E)

1T

Canonical
ey temperature

8

Eigenvalue-based T vs eigenstate-based T

Temp from traced eigenstate

Spatial partition, @

Compare p* = trg(p) = trg |E, ) Ey|

with p2 =trg(e ") or e FHa

Which 8 minimizes distance?

Bs = arggin dy (0%, p2)

“Subsystem temperature”

Bs — B¢ in td. limit

for chaotic local Hamiltonians
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Non-Equilibrium dynamics of

Context isolated quantum systems

Experiments
in the limit of “isolation”

. Bloch group,
time scale of

< environment
effects

time of
measurement

Nature Phys 2013

Spin chain in a random fiold

LRA R ER £ S & 05 CRN.

nitallocal pm urbation Localzaton,

0 o5 o
Normalzed opica thickress

e Ultracold trapped atoms/ions *ﬂ'li'” ,,,,,,

e NMR quantum computing Wetss group.

e Ultrafast pump-probe spectroscopy | %%

Wei, Ramanathan, Cappellaro,

PRL 2018
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Context Thermalization in isolated many-body systems

Isolated system, no external bath. Can it thermalize?
Answer: Pure state [¢(t)) remains pure under isolated evolution.
Will never turn into a mixed thermal state
No
L _BH —BE;
thermalization pc=tre P = Ze PE |E;) (|
of full system J

However:

TRRTIVN IO WOV AT
il vvwvvvu IR

observables could thermalize

Some observable

sub-regions of the isolated system could thermalize

time




Context Thermalization in isolated many-body systems
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An observable thermalizes

— relaxes to value dictated by thermal ensemble

Some observable

time



Context Thermalization in isolated many-body systems

I ) N N T
An observable thermalizes g WAWVAV U I VUN i
— relaxes to value dictated by thermal ensemble ;
time
% Initial state  [(0)) = >" ¢ |Ej) relaxes to
Jj
S t—o0, () 2 A
(O(t)) = (¥()O(t)) ———"— > Igl*(ElOIE)

J

* Prediction from thermal ensemble:

(O)ierm = 5t (02#) = ﬁzjje-ﬂfwélm
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Context Thermalization in isolated many-body systems

J

S IG(E01E) = ﬁ}jje—ﬂffwj\érm

* Motivates ETH (eigenstate thermalization hypothesis) for ( £j| O |E;)

* ETH — (Ej] o) |Ej)'s are smooth functions of E;

— ‘implies’ thermalization

Deutsch, P.R.A (1991); Srednicki, P.R.E (1994) .
Beugeling, Moessner,
Rigol, Dunjko, Olshanii, Nature (2008) Haque, P.R.E (2014)

Finite-Size Scaling of ETH
........... + many others



Context Thermalization in isolated many-body systems

H = Hxxz + XY G — 0)’S]
J

E.T.H. Scaling

0j = (Ei| O|E;) = (Ej| Shiaare 1)

_0-5 - 1 1 1 1 1 L 1 1 | 1 Il Il FL‘ 1
—0.2 0 0.2 —0.2 0 0.2 —0.2 0 0.2
Ea/L Ea/L Ea/L
Scaling of E.T.H. fluctuations: ¢ ~ D12 ~ el Beuge“;gaam“ss"e“

. . . P.R.E (2014)
D = dimension of Hilbert space
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J

R 1 CBE ey A
> _lgl(E[OIE) = m;e E(E|O|E)

* Motivates ETH (eigenstate thermalization hypothesis) for ( £j| O |E;)
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* Motivates ETH (eigenstate thermalization hypothesis) for ( £j| O |E;)

* ETH ——  “every eigenstate knows its temperature”




Context Thermalization in isolated many-body systems

R 1 , A
> Il (ElOIE) = mze_ﬁEJ(Ej\ O|E;)
J J

* Motivates ETH (eigenstate thermalization hypothesis) for ( £j| O |E;)
* ETH ——  “every eigenstate knows its temperature”

* Related idea: in every eigenstate, dens.mat. of subsystem A is close to

p’é =trp (e‘ﬁH) or e PHa




Context Thermalization in isolated many-body systems

J

S I6P(EI01E) = 5053 e E(5(0l5)

* Motivates ETH (eigenstate thermalization hypothesis) for ( £j| O |E;)
* ETH ——  “every eigenstate knows its temperature”

* Related idea: in every eigenstate, dens.mat. of subsystem A is close to

p’é =trp (e‘ﬁH) or e PHa

*

Temperature 3 required. Usual choice: canonical temperature (c.




Canonical temperature

Pretend: system is described by canonical dens.mat. pc = e~

tr(e—ﬁHH) . Zj e_ﬁEJEj . Z_[ e_ﬁEij

E=(H) = tr(e-BH) Eje—ﬁEf Z(B)
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Energy

B




Canonical temperature

Pretend: system is described by canonical dens.mat. pc = e~

tr(e—ﬁHH) . ZJ e_ﬂEjEj . Z_[ e_ﬁEij
we M) e 5 Z(3)

E=(H) =

T * Provides a map, temperature <> energy

*

Also for finite Hilbert space: negative temp!
Energy

*

Based on eigenvalues only

* Doesn't care about eigenstate physics!

T

Energy

B




Canonical temperature

Pretend: system is described by canonical dens.mat. pc = e~

tr(e—ﬁHH) . ZJ e_ﬂEjEj . Z_[ e_ﬁEjEj

E=(H) = tr(e-BH) Eje—ﬁEf Z(B)

T * Provides a map, temperature <> energy

*

Also for finite Hilbert space: negative temp!
Energy

*

Based on eigenvalues only
* Doesn't care about eigenstate physics!

* E.g., works for a random matrix,

T

Eneroy * or for an arbitrarily generated sequence
{E1, Ep,...}

B




Context “Many-body Hamiltonians are Random Matrices”

* Mid-spectrum eigenstates are somewhat ‘random’

—> one path to justifying ETH.

* Many-body Hamiltonians behave like random matrices

(when complex, chaotic, enough)

—  one ‘definition’ of quantum chaos




Context “Many-body Hamiltonians are Random Matrices”

Random matrices (GOE & GUE classes)

Eigenstates:  coefficients are gaussian-distributed

Eigenvalues: level spacings have Wigner-Dyson statistics
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Context “Many-body Hamiltonians are Random Matrices”
Coefficients of many-body eigenstates
|Ea) = Z Cn|n) [n)'s —— many-body configurations
n

L—1 L—2
Ho= i Y (S8 + 57 Sha+815755) + h X (ST S0+ ST Stha + 82575,
i=2

i=

_ . . In)'s —
Jo = 0 — integrable XXZ chain L)
Jo &~ J; — non-integrable )

(‘chaotic’ or ‘ergodic’) MiiT_TiTﬂ




Context “Many-body Hamiltonians are Random Matrices”

Coefficients of many-body eigenstates

|EA> = E Cn |n> Z = CpV D Betljagjeling, Moessner,
acker, Haque,
n P.R.E (2018)




Context “Many-body Hamiltonians are Random Matrices”

Coefficients of many-body eigenstates

Ea)=D aln)  z=cVD ST e
n P.R.E (2018)
NON-INTEGRABLE INTEGRABLE
Jo=J1 Jo =0
! ' ' ' N ' —— middle
- —-—-- lower
""" upper
---- Gauss
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Context

Level statistics of many-body spectra

“Many-body Hamiltonians are Random Matrices”

XXZ + NNN

r

0.5

04

[=15,N =
GOE Wﬁﬁl
L f' ﬂ‘_'
%
%
g f 1
SO, v . Poisson
0.01 0.1 10

(r) distinguishes
GOE, GUE,
Poisson

. Sit1 Si
ri = min <’+’ ’)
Si Si4+1

Integrable systems
usually have
Poisson statistics
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Context “Many-body Hamiltonians are Random Matrices”

Entanglement entropy of many-body eigenstates

Haque, McClarty,

(both: » = 0.5, A = 0.9) X
XYZ + NNN + hyfield (0.8) + hy-field (0.2) N ey
Block
4 = comb 4
2 --- Page (RMT)
S
c
@
IS
@
1S
Q@
[S)
1S
8
C
L
L=10 L=12
0 0 £ 0
-5 0 5 10 -5 0 5 10 -5 0 5 10 15

Eigen-energies
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Context “Many-body Hamiltonians are Random Matrices”

Only the middle of the spectrum?

Introduce (canonical) temperature

T o
mid-spectrum . infinite-
. = temperature
eigenstates
Energy states
Mid-spectrum eigenstates
— well-described by |[trand )
&~
— Finite-temperature eigenstates
é Energy — well-described by exp [—%H] [t)rand )
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Context “Many-body Hamiltonians are Random Matrices”

Not just the middle of the spectrum

Eigenstates as ~ exp [—gﬁ] [Yrana )

- XYZ
= - Page
— typicality

Entanglement entropy
2

=5 0 5 10
Eigen-energies or E(B)



Context “Many-body Hamiltonians are Random Matrices”

Not just the middle of the spectrum

Eigenstates as ~ exp [_g,:,] [Yrana )

- XYZ
= - Page
— typicality

‘Concentration of measure’ phenomenon:

B A _B
7HOe 2

< T/Jrand | e

Entanglement entropy
2

=5 0 5 10
Eigen-energies or E(B)



Context

Not just the middle of the spectrum

Eigenstates as

NeXp[ g

i

“Many-body Hamiltonians are Random Matrices”

|¢'rand >

Entanglement entropy
2

e

- Page
— typicality

=5 0 5 10
Eigen-energies or E(B)

‘Concentration of measure’ phenomenon:

_Bp

<7/}rand| e 2

2
\

N\m

Q>

Justifying ETH:

(Eal O|Ea) =~

mm

2 |7/}rand >

] -

Bph Bph

<¢rand| e 5 5 |'¢'rand>

should depend smoothly on 3, hence on energy
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Khaymovich, Haque, McClarty,

PRL 2019

ETH scaling — structure of operator matrices
Operators as matrices in basis of configurations {|n)} | J




Context “Many-body Hamiltonians are Random Matrices”

Operators as matrices in basis of configurations {|n)} ‘ Nigpmedten, IHoare, (s

ETH scaling — structure of operator matrices
PRL 2019 J

Operators {) forming basis

0 0 0 0 0 Changes one many-body configuration

0 0 0 1 0 to another.

o 0 0 O 0

0 0 0 0 0 Highly nonlocal

.. Behemoth operators
0O 0 0 O 0
Any operator is a sum of Behemoths.
~ (e.g. local observables, 2-point

have the form Qpy = |n) (1’| correlators)




Context ETH Scaling from sparsity of operator matrices

Behemoth distribution ~ Ko(Dx) — width ~ D~! — super-ETH scaling

Local operators are sums of M ~ O (D) Behemoths.
Using central limit theorem, width ~ VMD 1~ D12 5 ETH scaling

A ‘typical’ operator is dense, M > O (D)
If M~ O(D"P), width (using CLT) ~D~1/2+8/2 — sub-ETH scaling
If M~ O(D?), width ~D°

ETH works because D~1/2 scaling works because
physical operators are sparse. local operators have M ~ O (D)




Context ETH Scaling from sparsity of operator matrices

XXZ + NNN (LN)=(17.8). J;=],=1,A=A,=0.8

Distributions
=

10
-0.0002 0  0.0002 —-0.0002 0 0.0002 -0.02 0 0.02
(EA | T EB) matrix elements of partially/fully local operators
® Behemoth m %‘iq/sze
+ 2-point "
..... ND_
,,,,, ~D_1 10 N
. Dense
— .p2 p=1/4
RMT K e 3B
2 3 4 |— prediction | 1 2
10 109 10 for 2-point = ~p "




Temperature from Eigenvalues: Canonical temperature

Pretend: system is described by canonical dens.mat. pc = e 7/

e PHH) Y, PHE  ¥,e PR

E=(H) =

tr(e=fH) — ;e 5 Z(B)
T
Enaray * Provides a map, temperature <> energy
* Based on eigenvalues only
* Doesn't care about eigenstate physics!
& * Temperature from eigenstate?
cr! Energy
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* ETH ——  “every eigenstate knows its temperature”

*

Is p=|E,)(E,| closeto e #", for some 3?7 NO

*

Is p=|E,)(E,| closest to e #", for the correct 37

*

Eigenstate temperature: B¢ = argmin d, (p, pc)
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Eigenstate-based temperatures — (1) full

* ETH ——  “every eigenstate knows its temperature”

x Is p=|E,)(E,| close to e #H for some 37 NO
x Is p=|E,)(E,| closest to e #H, for the correct 57
*

Eigenstate temperature: B¢ = argmin d, (p, pc)
B

dp

9 * Expect mind, ~ 2

* Minimum at correct temperature?

| 8 * Be~pBc?  Be=PBc?
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Eigenstate-based temperatures — (2) traced

*

Full eigenstate being thermal —  far too ambitious

*

But subsystem A (smaller than half the system) should be close to thermal?

x Is pA =trg(p) = trg |E,){ E,| closest to pg = trg(e=#H), for the correct 37

*

Subsystem temperature: s = argmin dp (pA,pé)
B

d;D * Minimum at correct temperature?

* Bs~ fBc?  PBs=pc? insome limit?

* mind, =07 mind, — 0 in some limit?

* Which limit?
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Many-body Hamiltonians for this work

*

Lattice systems, finite Hilbert space.  Eigenspectrum has a bottom and a top

*

Strongly chaotic/ ergodic/ thermalizing systems (F) = 0.53

x L-site chains, spin-1/2 or qubits, Hilbert space dimension D = 2L,

*

For simplicity: no conserved quantities; Hilbert space is tensor product.

A = B L L
, D=2  pg=2Le
L. o S —

e = D = DsDg
L 4 sites Lp = L — L, sites

* Ising chain, transverse + longitudinal magnetic fields on each site
* XXZ chain, staggered transverse + longitudinal fields

* XXZ chain with disordered transverse + longitudinal magnetic fields




Distance measures

Schatten p-norm

* Shatten p-norm of a matrix M, in terms of its singular values s,:

1/p
M|, = (ZSL’)

* p=2 —— Frobenius norm or Hilbert-Schmidt norm

* p=1 —> trace norm




Distance measures

Schatten p-norm

* Shatten p-norm of a matrix M, in terms of its singular values s,:

1/p
M|, = (ZSL’)

* p=2 —— Frobenius norm or Hilbert-Schmidt norm

* p=1 —> trace norm

Schatten p-distance

Q

X 0,2
enll, <A

p

p-norm of difference between p-normalized matrices.




Eigenstate temperature — analytic result

* B minimizes d, (p, pc) = dp (|En){ En|, e PH)
* Express both DMs in eigenstate bases.

Set derivative w.r.t. 3 to zero.

tr(He=P5H)
E,= )
- tr(e—pPBH)



Eigenstate temperature — analytic result

* B minimizes d, (p, pc) = dp (|En){ En|, e PH)

* Express both DMs in eigenstate bases.

Set derivative w.r.t. 3 to zero.

Be = Bc/p

tr(He=P5H)
E,= )
- tr(e—pPBH)



Eigenstate temperature — analytic result

* B minimizes d, (p, pc) = dp (|En){ En|, e PH)

* Express both DMs in eigenstate bases.

Set derivative w.r.t. 3 to zero.

Be = Bc/p

. _ tr(He=PPH)
" tr(e=PPH)

* g = B¢ for trace distance

* e = Bc/2 for Hilbert-Schmidt distance




Eigenstate temperature — analytic result

* B minimizes d, (p, pc) = dp (|En){ En|, e PH)

* Express both DMs in eigenstate bases.

Set derivative w.r.t. 3 to zero.

Be = Bc/p

tr(He=P5H)
E,= )
- tr(e—pPBH)

* g = B¢ for trace distance
* e = Bc/2 for Hilbert-Schmidt distance

* Mathematical result — holds for any system

(even non-chaotic, random-matrix,...) 9




Eigenstate temperature — analytic result

* B minimizes d, (p, pc) = dp (|En){ En|, e PH)

* Express both DMs in eigenstate bases.
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* g = B¢ for trace distance
* e = Bc/2 for Hilbert-Schmidt distance

* Mathematical result — holds for any system

(even non-chaotic, random-matrix,...) 9

* Determined by eigenvalues alone 3




Eigenstate temperature — analytic result

* B minimizes d, (p, pc) = dp (|En){ En|, e PH)

* Express both DMs in eigenstate bases.

Set derivative w.r.t. 3 to zero.

Be = Bc/p
tr(He—PPH)
— Ep=——7"
" tr(e—PPH)
* g = B¢ for trace distance
* e = Bc/2 for Hilbert-Schmidt distance
* Mathematical result — holds for any system
For small B¢
(even non-chaotic, random-matrix,...) C) .
min d, ~ 21/P
* Determined by eigenvalues alone 3 close to max for p=1,2




Eigenstate temperature — staggered-field XXZ

e p=1 & p=2
Pc === P2




Eigenstate temperature — staggered-field XXZ

° p=1 & p=2 2 —_—————————-
fo === pel2 ‘<




Eigenstate temperature — staggered-field XXZ
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Subsystem temperature

A B Bs = arg;;in dp (0", p¢)
— —~ —
L 4 sites Lp =L — L sites pA = trB |En><En| and pé = trB(e_ﬂH)

* No sweeping analytical results. 3
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Subsystem temperature

A B Bs = arg;;in dp (0", p¢)
— —~ —
L 4 sites Lp =L — L sites pA = trB |En><En| and pé = trB(e_ﬂH)

* No sweeping analytical results. 9 Trace operation tricky.
Numerical observations only:
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Subsystem temperature

. A A
A f B Bs = arggun dp (p ,pc)
\ 7 S —
L 4 sites Lp =L — L sites pA = trB |En><En| and pé = trB(e_ﬂH)
5 L=12
. . o) . . La=4
* No sweeping analytical results. 9 Trace operation tricky.
Numerical observations only: - b
fie o
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* For La < L/2, [s clusters around ¢ EL

for L — oo with constant Ly,

x Bs — B¢ and d, — 0 in some limits: { Tor i = 0 it . fgfi € L




Subsystem temperature

. A A
A f B Bs = arggun dp (p ,pc)
\ 7 S —
L 4 sites Lp =L — Ly sites pA = trp |En><En| and pé = trB(e_ﬂH)
5 L=12
. . o) . . La=4
* No sweeping analytical results. 9 Trace operation tricky.
Numerical observations only: - b
fie o
-5

-0.5 0.0 0.5
* For Ly < L/2, fs clusters around ¢ EL

for L — oo with constant Ly,

x Bs — B¢ and d, — 0 in some limits: { Tor i = 0 it . fgfi € L

Not so good:  fixed L, increasing La




Subsystem temperature

A B Bs = arg;;in dp (0", p2)
\ /N —
L 4 sites Lp =L — L sites pA = trB |En > < En| and pé = trB(e_ﬂH)

5
* No sweeping analytical results. 9 Trace operation tricky.

Numerical observations only: - b

-5 .

* For Ly < L/2, fs clusters around ¢ EIL

for L — oo with constant Ly,

* fBs — B¢ and d, — 0 in some limits: { for L — 0o with const. La/L < 1

Not so good:  fixed L, increasing La

* Which distance? Doesn't seem to matter, broadly p-independent




Subsystem temperature

A B Bs = arg;;in dp (0", p2)
—_—— -
L 4 sites Lp =L — L sites pA = trB |En > < En| and pé = trB(e_ﬂH)

5
* No sweeping analytical results. 9 Trace operation tricky. 3
Numerical observations only: - b

-5

*

For La < L/2, pBs clusters around B¢ EIL

for L — oo with constant Ly,
for L — oo with const. La/L < 3

*

Bs — Bc and d, — 0 in some limits: {

Not so good:  fixed L, increasing La

*

Which distance?  Doesn’t seem to matter, broadly p-independent

x Compare p? = trg |E,)( E,| with e #H4 instead of p2 = trg(e #H)?




Subsystem temperature

A B Bs = arg;;in dp (0", p2)
—_—— -
L 4 sites Lp =L — L sites pA = trB |En > < En| and pé = trB(e_ﬂH)

5
* No sweeping analytical results. 9 Trace operation tricky.

Numerical observations only: - b

-5

*

For La < L/2, pBs clusters around B¢ EIL

for L — oo with constant Ly,
for L — oo with const. La/L < 3

*

Bs — Bc and d, — 0 in some limits: {

Not so good:  fixed L, increasing La

*

Which distance?  Doesn’t seem to matter, broadly p-independent

x Compare p? = trg |E,)( E,| with e #H4 instead of p2 = trg(e #H)?
Doesn’t seem to make much difference.




Subsystem temperature — chaotic Ising chain
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Subsystem temperature — chaotic Ising chain
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Subsystem temperature — chaotic Ising chain
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Subsystem temperature — chaotic Ising chain
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Subsystem temperature — scaling it ez
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Subsystem temperature — scaling
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Summary

Temperature from full eigenstate

Compare
p=|E)Ed| with pc=ePH

Which 8 minimizes distance?

Be = afgﬁmin dp (p; pc)

“Eigenstate temperature”

Be = —  for all systems

Distance measure important

Temp from traced eigenstate

D
Spatial partition, 2/

Compare p* = trg(p) = trg |E, ) ( Ey

with  pf =trg(e ™) or e Fha

Which 8 minimizes distance?

Bs = arggin dp (07, p2)

“Subsystem temperature”

Bs — B¢ in t.d. limit
for chaotic systems



Eigenstate temperature — random (GOE) matrix
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Subsystem temperature — random (GOE) matrix
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Eigenstate-based temperatures — full, ‘microcanonical’

* ETH ——  “every eigenstate knows its temperature”
x Is p=|E,)(E,| close to e #H, for some (7 NO
x Is p=|E,)(E,| closest to e #H, for the correct 57

* Eigenstate temperature: B = argmin d,, (p, pc)
B

* maybe more reasonable: compare

pmc =Y |E)(E,|  with e~
E,€AE

* Microcanonical variant of eigenstate temp:

Bmc = argénin d, (p, pc)



Eigenstate-based temperatures — full, ‘microcanonical’

* ETH ——  “every eigenstate knows its temperature”
x Is p=|E,)(E,| close to e #H, for some (7 NO
x Is p=|E,)(E,| closest to e #H, for the correct 57

* Eigenstate temperature: B = argmin d,, (p, pc)
B

* maybe more reasonable: compare

: —BH
pmMc = Z |En)( Enl with e’
E.€AE results ~ same as for
single eigenstate
* Microcanonical variant of eigenstate temp:

Bmc = arggnin d, (p, pc)
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Temperature from entropy

Closed system described by pure state
= no entropy of full eigenstate
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Temperature from entropy

Closed system described by pure state
= no entropy of full eigenstate

* Option 1:  Microcanonical entropy
— Entropy from eigenvalues

— another eigenvalue-based temperature
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Temperature from entropy

Closed system described by pure state
= no entropy of full eigenstate

* Option 1:  Microcanonical entropy

— Entropy from eigenvalues
— another eigenvalue-based temperature

B= @ * Option 2:  Entanglement entropy

O0E .
— If 54 is entanglement entropy of La-sized

system, expect

L
0 @ <a>

— another eigenstate-based temperature



Temperature from microcanonical entropy

* S = log(num. eigstates at energy E)




Temperature from microcanonical entropy

At energy E?

* S = log(num. eigstates at energy E) € (E.E + AE)

* Define Q(E) — num. states with energy < E

S = log [Q(E + AE) — Q(E)




Temperature from microcanonical entropy

At energy E?
€ (E,E+ AE)

* S = log(num. eigstates at energy E)
* Define Q(E) — num. states with energy < E
S = log [Q(E + AE) — Q(E)

* For accessible sizes, results strongly depend on choice of AE




Temperature from microcanonical entropy

At energy E?

* S = log(num. eigstates at energy E) € (E.E + AE)

* Define Q(E) — num. states with energy < E
S = log [Q(E + AE) — Q(E)
* For accessible sizes, results strongly depend on choice of AE

* Solutions:  [Gurarie, Am. J. Phys (2007)]




Temperature from microcanonical entropy

At energy E?

* S = log(num. eigstates at energy E) € (E.E + AE)

* Define Q(E) — num. states with energy < E
S = log [Q(E + AE) — Q(E)
* For accessible sizes, results strongly depend on choice of AE

* Solutions:  [Gurarie, Am. J. Phys (2007)]

> doesn't work
well

9 > dimensions?
— Redefine S = log <8E>

— Use AE = (const)v CT?,
with C = QE/OT, heat capacity
Reason:

S = BE — BF(B) + log(AE /27 CT?)




Temperature from microcanonical entropy

5
* S = log(num. eigstates at energy E) EA(tEerE:g_yAEE')

* Define Q(E) — num. states with energy < E
S = log [Q(E +AE) - Q(E)}

* For accessible sizes, results strongly depend on choice of AE

* Solutions:  [Gurarie, Am. J. Phys (2007)] e Priid
g - e T~
_ 90 > dimensions? ~5] /\ 51 /\
— Redefine S = |0g = > doesn’t work Sﬁ { LY
OE 01 04" K
well ‘ : -
2] —
— Use AE = (const)V CT?, S o
with C = QE/OT, heat capacity Ry
Reason: 50 5 -25 00 25
E E

S = BE — BF(B) + log(AE /27 CT?)




Summary

Temperature from full eigenstate

Compare
p=|E)Ed| with pc=ePH

Which 8 minimizes distance?

Be = afgﬁmin dp (p; pc)

“Eigenstate temperature”

Be = —  for all systems

Distance measure important

Temp from traced eigenstate

D
Spatial partition, 2/

Compare p* = trg(p) = trg |E, ) ( Ey

with  pf =trg(e ™) or e Fha

Which 8 minimizes distance?

Bs = arggin dp (07, p2)

“Subsystem temperature”

Bs — B¢ in t.d. limit
for chaotic systems



