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Punchline Eigenvalue-based T vs eigenstate-based T

Temperature from eigenvalues

E = ⟨H⟩ =
tr(e−βHH)

tr(e−βH)

=

∑
j e

−βEjEj∑
j e

−βEj

Energy

Energy

Invert: βC (E )

Canonical
temperature

Temperature from full eigenstate

Compare
ρ = |En ⟩⟨En| with ρC = e−βH

Which β minimizes distance?

βE = argmin
β

dp (ρ, ρC )

“Eigenstate temperature”

βE ∼ βC for all systems

Distance measure important
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Punchline continued Eigenvalue-based T vs eigenstate-based T

Temperature from eigenvalues

E = ⟨H⟩ =
tr(e−βHH)

tr(e−βH)

=

∑
j e

−βEjEj∑
j e

−βEj

Energy

Energy

Invert: βC (E )

Canonical
temperature

Temp from traced eigenstate

Spatial partition,
A B

Compare ρA = trB(ρ) = trB |En ⟩⟨En|

with ρAC = trB(e
−βH) or e−βHA

Which β minimizes distance?

βS = argmin
β

dp
(
ρA, ρAC

)
“Subsystem temperature”

βS −→ βC in t.d. limit

for chaotic local Hamiltonians
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Context Non-Equilibrium dynamics of
isolated quantum systems

Experiments
in the limit of “isolation”:

time of
measurement

≪
time scale of
environment

effects

• Ultracold trapped atoms/ions
• NMR quantum computing
• Ultrafast pump-probe spectroscopy

Weiss group,

Nature 2006

Bloch group,

Nature Phys 2013

Wei, Ramanathan, Cappellaro,

PRL 2018
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Context Thermalization in isolated many-body systems

Isolated system, no external bath. Can it thermalize?

Answer:

No
thermalization
of full system

Pure state |ψ(t) ⟩ remains pure under isolated evolution.
Will never turn into a mixed thermal state

ρC = tr e−βH =
∑
j

e−βEj |Ej ⟩⟨Ej |

However:

observables could thermalize

sub-regions of the isolated system could thermalize
time

S
o
m

e
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b
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e
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a
b
le
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Context Thermalization in isolated many-body systems

An observable thermalizes

=⇒ relaxes to value dictated by thermal ensemble

time

S
o
m

e
  
 o

b
s
e
rv

a
b
le

⋆ Initial state |ψ(0) ⟩ =
∑
j

cj |Ej ⟩ relaxes to

⟨O(t)⟩ = ⟨ψ(t)| Ô |ψ(t) ⟩ t→∞, ⟨.⟩−−−−−−−−−→
∑
j

|cj |2⟨Ej | Ô |Ej ⟩

⋆ Prediction from thermal ensemble:

⟨O⟩therm =
1

Z (β)
tr
(
Ôe−βĤ

)
=

1

Z (β)

∑
j

e−βEj ⟨Ej | Ô |Ej ⟩
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Context Thermalization in isolated many-body systems

�

�

�

�
∑
j

|cj |2⟨Ej | Ô |Ej ⟩ =
1

Z (β)

∑
j

e−βEj ⟨Ej | Ô |Ej ⟩

⋆ Motivates ETH (eigenstate thermalization hypothesis) for ⟨Ej | Ô |Ej ⟩

⋆ ETH −→ ⟨Ej | Ô |Ej ⟩’s are smooth functions of Ej

−→ ‘implies’ thermalization

Deutsch, P.R.A (1991); Srednicki, P.R.E (1994)

Rigol, Dunjko, Olshanii, Nature (2008)

........... + many others

Beugeling, Moessner,
Haque, P.R.E (2014)
Finite-Size Scaling of ETH
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⋆ Motivates ETH (eigenstate thermalization hypothesis) for ⟨Ej | Ô |Ej ⟩

⋆ ETH −→ ⟨Ej | Ô |Ej ⟩’s are smooth functions of Ej

−→ ‘implies’ thermalization

Deutsch, P.R.A (1991); Srednicki, P.R.E (1994)

Rigol, Dunjko, Olshanii, Nature (2008)

........... + many others

Beugeling, Moessner,
Haque, P.R.E (2014)
Finite-Size Scaling of ETH



Context Thermalization in isolated many-body systems

�

�

�

�
∑
j

|cj |2⟨Ej | Ô |Ej ⟩ =
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Context Thermalization in isolated many-body systems

E.T.H. Scaling

H = HXXZ + λ
∑
j

(j − j0)
2Sz

j

Ojj = ⟨ Ej
∣∣ Ô ∣∣Ej ⟩ = ⟨ Ej

∣∣ Sz
middle

∣∣Ej ⟩

Scaling of E.T.H. fluctuations: σ ∼ D−1/2 ∼ e−αL

D = dimension of Hilbert space

Beugeling, Moessner,
Haque,

P.R.E (2014)
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1
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e−βEj ⟨Ej | Ô |Ej ⟩

⋆ Motivates ETH (eigenstate thermalization hypothesis) for ⟨Ej | Ô |Ej ⟩

⋆ ETH −→ “every eigenstate knows its temperature”

⋆ Related idea: in every eigenstate, dens.mat. of subsystem A is close to

ρAC = trB
(
e−βH

)
or e−βHA

⋆ Temperature β required. Usual choice: canonical temperature βC .
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Canonical temperature

Pretend: system is described by canonical dens.mat. ρC = e−βH

E = ⟨H⟩ =
tr(e−βHH)

tr(e−βH)
=

∑
j e

−βEjEj∑
j e

−βEj
=

∑
j e

−βEjEj

Z (β)

Energy

Energy

⋆ Provides a map, temperature ↔ energy

⋆ Also for finite Hilbert space: negative temp!

⋆ Based on eigenvalues only

⋆ Doesn’t care about eigenstate physics!

⋆ E.g., works for a random matrix,

⋆ or for an arbitrarily generated sequence
{E1,E2, . . .}
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Context “Many-body Hamiltonians are Random Matrices”

⋆ Mid-spectrum eigenstates are somewhat ‘random’

−→ one path to justifying ETH.

⋆ Many-body Hamiltonians behave like random matrices

(when complex, chaotic, enough)

−→ one ‘definition’ of quantum chaos



Context “Many-body Hamiltonians are Random Matrices”

Random matrices (GOE & GUE classes)

Eigenstates: coefficients are gaussian-distributed

Eigenvalues: level spacings have Wigner-Dyson statistics



Context “Many-body Hamiltonians are Random Matrices”

Coefficients of many-body eigenstates

|EA ⟩ =
∑
n

cn |n ⟩ |n ⟩’s −→ many-body configurations

H = J1

L−1∑
i=1

(
S+
i S−

i+1 + S−
i S+

i+1 + ∆1S
z
i S

z
i+1

)
+ J2

L−2∑
i=2

(
S+
i S−

i+2 + S−
i S+

i+2 + ∆2S
z
i S

z
i+2

)

J2 = 0 −→ integrable XXZ chain

J2 ≈ J1 −→ non-integrable
(‘chaotic’ or ‘ergodic’)

|n ⟩’s −→
|↓↓↓↓↑↑↑↑⟩
|↓↓↓↑↓↑↑↑⟩
|↓↓↓↑↑↓↑↑⟩
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Context “Many-body Hamiltonians are Random Matrices”

Coefficients of many-body eigenstates

|EA ⟩ =
∑
n

cn |n ⟩ z = cn
√
D Beugeling, Moessner,

Bäcker, Haque,
P.R.E (2018)
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Context “Many-body Hamiltonians are Random Matrices”

Level statistics of many-body spectra

0.01 0.1 1 10

J
2
 / J

1

0
.4

0
.5

〈r
〉

GOE

Poisson

XXZ + NNN
L=15, N

p
= 6

⟨r⟩ distinguishes
GOE, GUE,
Poisson

ri = min

(
si+1

si
,

si
si+1

)

Integrable systems
usually have

Poisson statistics
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Context “Many-body Hamiltonians are Random Matrices”

Entanglement entropy of many-body eigenstates

XYZ + NNN
(both: η = 0.5, ∆ = 0.9)
+ hx -field (0.8) + hz -field (0.2)

Haque, McClarty,
Khaymovich,
PRE 2022
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Context “Many-body Hamiltonians are Random Matrices”

Only the middle of the spectrum?

Introduce (canonical) temperature

Energy

Energy

mid-spectrum
eigenstates

≡
infinite-

temperature
states

Mid-spectrum eigenstates
−→ well-described by |ψrand ⟩

Finite-temperature eigenstates

−→ well-described by exp
[
−β

2
Ĥ
]
|ψrand ⟩
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⟨EA| Ô |EA ⟩ ≈ ⟨ψrand| e−
β
2
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ĤÔe−

β
2
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Ĥ |ψrand ⟩

should depend smoothly on β, hence on energy



Context “Many-body Hamiltonians are Random Matrices”

Not just the middle of the spectrum

Eigenstates as ∼ exp
[
−β

2
Ĥ
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ĤÔe−

β
2
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Context “Many-body Hamiltonians are Random Matrices”

ETH scaling — structure of operator matrices

Operators as matrices in basis of configurations {|n ⟩} Khaymovich, Haque, McClarty,
PRL 2019

Operators Ω̂ forming basis

0 0 0 0 . . . 0
0 0 0 1 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0



have the form

�
�

�
Ω̂nn′ ≡ |n ⟩⟨n′|

Changes one many-body configuration
to another.

Highly nonlocal

Behemoth operators

Any operator is a sum of Behemoths.

(e.g. local observables, 2-point
correlators)
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Context ETH Scaling from sparsity of operator matrices

Behemoth distribution ∼ K0(Dx) −→ width ∼ D−1 −→ super-ETH scaling

Local operators are sums of M ∼ O (D) Behemoths.

Using central limit theorem, width ∼
√
MD−1 ∼ D−1/2 −→ ETH scaling

A ‘typical’ operator is dense, M > O (D)

If M ∼ O
(
D1+β

)
, width (using CLT) ∼ D−1/2+β/2 −→ sub-ETH scaling

If M ∼ O
(
D2
)
, width ∼ D0

�
�

�
�

ETH works because
physical operators are sparse.

�
�

�
�

D−1/2 scaling works because
local operators have M ∼ O (D)



Context ETH Scaling from sparsity of operator matrices
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Temperature from Eigenvalues: Canonical temperature

Pretend: system is described by canonical dens.mat. ρC = e−βH

E = ⟨H⟩ =
tr(e−βHH)

tr(e−βH)
=

∑
j e

−βEjEj∑
j e

−βEj
=

∑
j e

−βEjEj

Z (β)

Energy

Energy

⋆ Provides a map, temperature ↔ energy

⋆ Based on eigenvalues only

⋆ Doesn’t care about eigenstate physics!

⋆ Temperature from eigenstate?



Eigenstate-based temperatures — (1) full

⋆ ETH −→ “every eigenstate knows its temperature”

⋆ Is ρ = |En ⟩⟨En| close to e−βH , for some β? NO

⋆ Is ρ = |En ⟩⟨En| closest to e−βH , for the correct β?

⋆ Eigenstate temperature: βE = argmin
β

dp (ρ, ρC )

⋆ Expect min dp ≈ 2

⋆ Minimum at correct temperature?

⋆ βE ≈ βC? βE = βC?
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Eigenstate-based temperatures — (2) traced

⋆ Full eigenstate being thermal −→ far too ambitious

⋆ But subsystem A (smaller than half the system) should be close to thermal?

⋆ Is ρA = trB(ρ) = trB |En ⟩⟨En| closest to ρAC = trB(e
−βH), for the correct β?

⋆ Subsystem temperature: βS = argmin
β

dp
(
ρA, ρAC

)

⋆ Minimum at correct temperature?

⋆ βS ≈ βC? βS = βC? in some limit?

⋆ min dp ≈ 0? min dp → 0 in some limit?

⋆ Which limit?
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Many-body Hamiltonians for this work

⋆ Lattice systems, finite Hilbert space. Eigenspectrum has a bottom and a top

⋆ Strongly chaotic/ ergodic/ thermalizing systems ⟨r̃⟩ ≈ 0.53

⋆ L-site chains, spin-1/2 or qubits, Hilbert space dimension D = 2L.

⋆ For simplicity: no conserved quantities; Hilbert space is tensor product.

DA = 2LA DB = 2LB

D = DADB

⋆ Ising chain, transverse + longitudinal magnetic fields on each site

⋆ XXZ chain, staggered transverse + longitudinal fields

⋆ XXZ chain with disordered transverse + longitudinal magnetic fields
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Distance measures

Schatten p-norm

⋆ Shatten p-norm of a matrix M, in terms of its singular values sn:

∥M∥p =

(∑
n

spn

)1/p

⋆ p = 1 −→ trace norm

⋆ p = 2 −→ Frobenius norm or Hilbert-Schmidt norm

Schatten p-distance

dp(M,Q) =

∥∥∥∥ M

∥M∥p
− Q

∥Q∥p

∥∥∥∥
p

∈ [0, 2]

p-norm of difference between p-normalized matrices.
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Eigenstate temperature — analytic result

⋆ βE minimizes dp (ρ, ρC ) = dp
(
|En ⟩⟨En| , e−βH

)
⋆ Express both DMs in eigenstate bases.

Set derivative w.r.t. β to zero.

−→ En =
tr(He−pβH)

tr(e−pβH)

βE = βC/p

⋆ βE = βC for trace distance

⋆ βE = βC/2 for Hilbert-Schmidt distance

⋆ Mathematical result — holds for any system

(even non-chaotic, random-matrix,...)

⋆ Determined by eigenvalues alone

For small βC

min dp ≈ 21/p

close to max for p = 1, 2
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Eigenstate temperature — staggered-field XXZ
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Subsystem temperature

βS = argmin
β

dp
(
ρA, ρAC

)
ρA = trB |En ⟩⟨En| and ρAC = trB(e

−βH)

⋆ No sweeping analytical results.

Trace operation tricky.
Numerical observations only:

⋆ For LA ≤ L/2, βS clusters around βC

⋆ βS → βC and dp → 0 in some limits:

{
for L → ∞ with constant LA,
for L → ∞ with const. LA/L <

1
2

Not so good: fixed L, increasing LA

⋆ Which distance? Doesn’t seem to matter, broadly p-independent

⋆ Compare ρA = trB |En ⟩⟨En| with e−βHA , instead of ρAC = trB(e
−βH)?

Doesn’t seem to make much difference.
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Subsystem temperature — scaling L → ∞, const LA = 2
Disordered XXZ chain
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Summary

Temperature from full eigenstate

Compare
ρ = |En ⟩⟨En| with ρC = e−βH

Which β minimizes distance?

βE = argmin
β

dp (ρ, ρC )

“Eigenstate temperature”

βE =
βC
p

for all systems

Distance measure important

Temp from traced eigenstate

Spatial partition,
A B

Compare ρA = trB(ρ) = trB |En ⟩⟨En|

with ρAC = trB(e
−βH) or e−βHA

Which β minimizes distance?

βS = argmin
β

dp
(
ρA, ρAC

)
“Subsystem temperature”

βS −→ βC in t.d. limit
for chaotic systems



Eigenstate temperature — random (GOE) matrix
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Subsystem temperature — random (GOE) matrix



Eigenstate-based temperatures — full, ‘microcanonical’

⋆ ETH −→ “every eigenstate knows its temperature”

⋆ Is ρ = |En ⟩⟨En| close to e−βH , for some β? NO

⋆ Is ρ = |En ⟩⟨En| closest to e−βH , for the correct β?

⋆ Eigenstate temperature: βE = argmin
β

dp (ρ, ρC )

⋆ maybe more reasonable: compare

ρMC =
∑

En∈∆E

|En ⟩⟨En| with e−βH

⋆ Microcanonical variant of eigenstate temp:

βMC = argmin
β

dp (ρ, ρC )

results ≈ same as for
single eigenstate
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Temperature from entropy

β =
∂S

∂E

Closed system described by pure state
=⇒ no entropy of full eigenstate

⋆ Option 1: Microcanonical entropy

– Entropy from eigenvalues
– another eigenvalue-based temperature

⋆ Option 2: Entanglement entropy

– If SA is entanglement entropy of LA-sized
system, expect

S ≈ SA

(
L

LA

)

– another eigenstate-based temperature
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Temperature from microcanonical entropy

⋆ S = log(num. eigstates at energy E )

At energy E?
∈ (E ,E +∆E )

⋆ Define Ω(E ) → num. states with energy < E

S = log
[
Ω(E +∆E )− Ω(E )

]
⋆ For accessible sizes, results strongly depend on choice of ∆E

⋆ Solutions: [Gurarie, Am. J. Phys (2007)]

– Redefine S = log

(
∂Ω

∂E

) ▷ dimensions?
▷ doesn’t work

well

– Use ∆E = (const)
√
CT 2,

with C = ∂E/∂T , heat capacity

Reason:
S = βE − βF (β) + log(∆E/

√
2πCT 2)
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