isolated many-body quantum systems

isolated many-body quantum systems

Masud Haque

TU Dresden Institut für Theoretische Physik Dresden, Germany

Funding:

DFG, through SFB No. 1143 (Project ID No. 247310070)

isolated many-body quantum systems

Masud Haque

TU Dresden Institut für Theoretische Physik Dresden, Germany

Funding:

DFG, through SFB No. 1143 (Project ID No. 247310070)

Maynooth University Dept. Theoretical Physics

Maynooth, Ireland

Max Planck Institute for Physics of Complex Systems (MPI-PKS)

Dresden, Germany

isolated many-body quantum systems

Burke, Nakerst, Haque, PRE 2023 Assigning temperatures to eigenstates

Burke and Haque, PRE 2023 Entropy & temperature in finite isolated quantum systems

Phillip Cussen Burke

Haque, McClarty, Khaymovich, PRE 2022 Entanglement in mid-spectrum eigenstates

Khaymovich, Haque, McClarty, PRL 2019 Eigenstate Thermalization, Random Matrix Theory and Behemoths

Beugeling, Bäcker, Moessner, Haque, PRE 2018 Eigenstate amplitudes (coefficients)

Beugeling, Moessner, Haque, PRE 2014 Finite-size scaling of eigenstate thermalization

Goran Nakerst

Temperature from eigenvalues

Punchline

Temperature from eigenvalues

$$E = \langle H \rangle = \frac{\operatorname{tr}(e^{-\beta H}H)}{\operatorname{tr}(e^{-\beta H})}$$
$$= \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{\sum_{j} e^{-\beta E_{j}}}$$
Invert: $\beta_{C}(E)$

Temperature from full eigenstate $\begin{array}{c} \text{Compare} \\ \rho = |E_n\rangle \langle E_n| \quad \text{with} \quad \rho_C = e^{-\beta H} \end{array}$

Which β minimizes distance?

$$\beta_{E} = \underset{\beta}{\operatorname{argmin}} \, d_{p} \left(\rho, \rho_{C} \right)$$

"Eigenstate temperature"

Punchline

Temperature from eigenvalues

$$E = \langle H \rangle = \frac{\operatorname{tr}(e^{-\beta H}H)}{\operatorname{tr}(e^{-\beta H})}$$
$$= \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{\sum_{j} e^{-\beta E_{j}}}$$
Invert: $\beta_{C}(E)$

Temperature from full eigenstate Compare $\rho = |E_n\rangle\langle E_n|$ with $\rho_C = e^{-\beta H}$ Which β minimizes distance? $\beta_E = \operatorname{argmin} d_p(\rho, \rho_C)$ "Eigenstate temperature"

 $\beta_E \sim \beta_C$ for all systems

Distance measure important

Punchline continued

Temperature from eigenvalues

Punchline continued

Temperature from eigenvalues

Temp from traced eigenstate Spatial partition, A B Compare $\rho^A = \operatorname{tr}_B(\rho) = \operatorname{tr}_B |E_n\rangle\langle E_n|$ with $\rho_C^A = \operatorname{tr}_B(e^{-\beta H})$ or $e^{-\beta H_A}$

Which β minimizes distance?

$$\beta_{S} = \underset{\beta}{\operatorname{argmin}} d_{\rho} \left(\rho^{A}, \rho^{A}_{C} \right)$$

"Subsystem temperature"

Punchline continued

Temperature from eigenvalues

$$E = \langle H \rangle = \frac{\operatorname{tr}(e^{-\beta H}H)}{\operatorname{tr}(e^{-\beta H})}$$
$$= \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{\sum_{j} e^{-\beta E_{j}}}$$
Invert: $\beta_{C}(E)$

Temp from traced eigenstate Spatial partition, A BCompare $\rho^A = \operatorname{tr}_B(\rho) = \operatorname{tr}_B |E_n\rangle\langle E_n|$ with $\rho_C^A = \operatorname{tr}_B(e^{-\beta H})$ or $e^{-\beta H_A}$

Which β minimizes distance?

$$\beta_{S} = \underset{\beta}{\operatorname{argmin}} d_{p} \left(\rho^{A}, \rho^{A}_{C} \right)$$

"Subsystem temperature"

 $\beta_S \longrightarrow \beta_C$ in t.d. limit

for chaotic local Hamiltonians

Non-Equilibrium dynamics of isolated quantum systems

Experiments in the limit of "isolation":

time of measurement

time scale of environment effects

Non-Equilibrium dynamics of isolated quantum systems

Context Thermalization in isolated many-body systems

Context Thermalization in isolated many-body systems

Isolated system, no	o external bath.	Can it thermalize?
Answer:	Pure state $ \psi(t)\rangle$ remains pure under isolated evolution. Will never turn into a mixed thermal state	
No thermalization of full system	$\rho_{C} =$	${ m tr}e^{-eta H} = \sum_j e^{-eta E_j} \ket{E_j}ra{E_j}$

Context Thermalization in isolated many-body systems

Isolated system, no	external bath.	Can it thermalize?
Answer:	Pure state $ \psi(t)\rangle$ remains pure under isolated evolution. Will never turn into a mixed thermal state	
No thermalization of full system	$\rho_C =$	tr $e^{-eta H} = \sum_j e^{-eta E_j} \ket{E_j}ra{E_j}$

However:

sub-regions of the isolated system could thermalize

An observable thermalizes

 \implies relaxes to value dictated by thermal ensemble

Thermalization in isolated many-body systems

An observable thermalizes

Context

 \implies relaxes to value dictated by thermal ensemble

* Initial state
$$|\psi(\mathbf{0})\rangle = \sum_{j} c_{j} |E_{j}\rangle$$
 relaxes to
 $\langle O(t)\rangle = \langle \psi(t)| \hat{O} |\psi(t)\rangle \xrightarrow{t \to \infty, \langle . \rangle} \sum_{j} |c_{j}|^{2} \langle E_{j}| \hat{O} |E_{j}\rangle$

* Prediction from thermal ensemble:

$$\langle O \rangle_{\text{therm}} = \frac{1}{Z(\beta)} \operatorname{tr} \left(\hat{O} e^{-\beta \hat{H}} \right) = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle$$

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle \right)$$

* Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle\right)$$

- * Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$
- * ETH $\longrightarrow \langle E_j | \hat{O} | E_j \rangle$'s are smooth functions of E_j

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle\right)$$

- * Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$
- * ETH $\longrightarrow \langle E_j | \hat{O} | E_j \rangle$'s are smooth functions of E_j

 \longrightarrow 'implies' thermalization

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle\right)$$

- * Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$
- * ETH $\longrightarrow \langle E_j | \hat{O} | E_j \rangle$'s are smooth functions of E_j

 \longrightarrow 'implies' thermalization

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle\right)$$

* Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$

* ETH $\longrightarrow \langle E_j | \hat{O} | E_j \rangle$'s are smooth functions of E_j

 \longrightarrow 'implies' thermalization

Deutsch, P.R.A (1991); Srednicki, P.R.E (1994) Rigol, Dunjko, Olshanii, Nature (2008)

 $\dots + many$ others

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle\right)$$

* Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$

* ETH $\longrightarrow \langle E_j | \hat{O} | E_j \rangle$'s are smooth functions of E_j

 \rightarrow 'implies' thermalization

Deutsch, P.R.A (1991); Srednicki, P.R.E (1994) Rigol, Dunjko, Olshanii, Nature (2008)

 $\dots + many$ others

Beugeling, Moessner, Haque, P.R.E (2014) Finite-Size Scaling of ETH

Thermalization in isolated many-body systems

Context

E.T.H. Scaling

 $H = H_{XXZ} + \lambda \sum_{j} (j - j_0)^2 S_j^z$

$$O_{jj} = \langle E_j | \hat{O} | E_j \rangle = \langle E_j | S^{z}_{middle} | E_j \rangle$$

Scaling of E.T.H. fluctuations: $\sigma \sim D^{-1/2} \sim e^{-\alpha L}$ D = dimension of Hilbert space Beugeling, Moessner, Haque, P.R.E (2014)

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle\right)$$

* Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle \right)$$

- * Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$
- \star ETH \longrightarrow "every eigenstate knows its temperature"

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle\right)$$

- * Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$
- \star ETH \longrightarrow "every eigenstate knows its temperature"
- \star Related idea: in every eigenstate, dens.mat. of subsystem A is close to

$$\rho_C^A = \operatorname{tr}_B\left(e^{-\beta H}\right) \quad \text{or} \quad e^{-\beta H_A}$$

$$\left(\sum_{j} |c_{j}|^{2} \langle E_{j} | \hat{O} | E_{j} \rangle = \frac{1}{Z(\beta)} \sum_{j} e^{-\beta E_{j}} \langle E_{j} | \hat{O} | E_{j} \rangle\right)$$

- * Motivates ETH (eigenstate thermalization hypothesis) for $\langle E_j | \hat{O} | E_j \rangle$
- \star ETH \longrightarrow "every eigenstate knows its temperature"
- \star Related idea: in every eigenstate, dens.mat. of subsystem A is close to

$$\rho_C^A = \operatorname{tr}_B\left(e^{-\beta H}\right) \quad \text{or} \quad e^{-\beta H_A}$$

* Temperature β required. Usual choice: canonical temperature β_{C} .

Pretend: system is described by canonical dens.mat. $\rho_{C} = e^{-\beta H}$

$$E = \langle H \rangle = \frac{\operatorname{tr}(e^{-\beta H}H)}{\operatorname{tr}(e^{-\beta H})} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{\sum_{j} e^{-\beta E_{j}}} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{Z(\beta)}$$

Pretend: system is described by canonical dens.mat. $\rho_{C} = e^{-\beta H}$

$$E = \langle H \rangle = \frac{\operatorname{tr}(e^{-\beta H}H)}{\operatorname{tr}(e^{-\beta H})} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{\sum_{j} e^{-\beta E_{j}}} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{Z(\beta)}$$

- $\star\,$ Provides a map, temperature $\leftrightarrow\,$ energy
- * Also for finite Hilbert space: negative temp!

Pretend: system is described by canonical dens.mat. $\rho_C = e^{-\beta H}$

$$E = \langle H \rangle = \frac{\operatorname{tr}(e^{-\beta H}H)}{\operatorname{tr}(e^{-\beta H})} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{\sum_{j} e^{-\beta E_{j}}} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{Z(\beta)}$$

- \star Provides a map, temperature \leftrightarrow energy
- * Also for finite Hilbert space: negative temp!
- ★ Based on eigenvalues only
- * Doesn't care about eigenstate physics!

Pretend: system is described by canonical dens.mat. $\rho_C = e^{-\beta H}$

$$E = \langle H \rangle = \frac{\operatorname{tr}(e^{-\beta H}H)}{\operatorname{tr}(e^{-\beta H})} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{\sum_{j} e^{-\beta E_{j}}} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{Z(\beta)}$$

- \star Provides a map, temperature \leftrightarrow energy
- * Also for finite Hilbert space: negative temp!
- ★ Based on eigenvalues only
- * Doesn't care about eigenstate physics!
- $\star\,$ E.g., works for a random matrix,
- * or for an arbitrarily generated sequence $\{E_1, E_2, \ldots\}$

* Mid-spectrum eigenstates are somewhat 'random'

 \longrightarrow one path to justifying ETH.

* Many-body Hamiltonians behave like random matrices

(when complex, chaotic, enough)

 \rightarrow one 'definition' of quantum chaos

Random matrices (GOE & GUE classes)

Eigenstates: coefficients are gaussian-distributed

Eigenvalues: level spacings have Wigner-Dyson statistics

Coefficients of many-body eigenstates

 $|\mathsf{E}_A\rangle = \sum_{\boldsymbol{n}} c_{\boldsymbol{n}} |\boldsymbol{n}\rangle \qquad |\boldsymbol{n}\rangle$'s \longrightarrow many-body configurations

Coefficients of many-body eigenstates

$$|\mathsf{E}_A\rangle = \sum_{n} c_n |n\rangle$$
 $|n\rangle$'s \longrightarrow many-body configurations

$$H = J_1 \sum_{i=1}^{L-1} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + \Delta_1 S_i^z S_{i+1}^z \right) + J_2 \sum_{i=2}^{L-2} \left(S_i^+ S_{i+2}^- + S_i^- S_{i+2}^+ + \Delta_2 S_i^z S_{i+2}^z \right)$$

 $J_2 = 0 \longrightarrow$ integrable XXZ chain $J_2 \approx J_1 \longrightarrow$ non-integrable ('chaotic' or 'ergodic')

$$|\mathbf{n}\rangle$$
's \longrightarrow

$$|\downarrow\downarrow\downarrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$$

$$|\downarrow\downarrow\downarrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$$

$$\vdots$$
Coefficients of many-body eigenstates

n

$$|\mathsf{E}_A\rangle = \sum c_n |n\rangle \qquad z = c_n \sqrt{\mathcal{D}}$$

Beugeling, Moessner, Bäcker, Haque, P.R.E (2018)

Coefficients of many-body eigenstates

$$|\mathsf{E}_A\rangle = \sum_{\boldsymbol{n}} c_{\boldsymbol{n}} |\boldsymbol{n}\rangle \qquad z = c_{\boldsymbol{n}} \sqrt{\mathcal{D}}$$

Beugeling, Moessner, Bäcker, Haque, P.R.E (2018)

NON-INTEGRABLE

INTEGRABLE

Level statistics of many-body spectra

Level statistics of many-body spectra

XXZ + NNN

 $L=15, N_{\rm p}=6$

(r) distinguishesGOE, GUE,Poisson

$$r_i = \min\left(\frac{s_{i+1}}{s_i}, \frac{s_i}{s_{i+1}}\right)$$

Integrable systems usually have Poisson statistics

Entanglement entropy of many-body eigenstates

Entanglement entropy of many-body eigenstates

XYZ + NNN

(both: $\eta = 0.5$, $\Delta = 0.9$) + h_x -field (0.8) + h_z -field (0.2) Haque, McClarty, Khaymovich, PRE 2022

Only the middle of the spectrum?

Only the middle of the spectrum? Introduce (canonical) temperature

Not just the middle of the spectrum

ETH scaling — structure of operator matrices

ETH scaling — structure of operator matricesOperators as matrices in basis of configurations $\{|n\rangle\}$ Khaymovich, Haque, McClarty,
PRL 2019

Context ETH Scaling from sparsity of operator matrices

Behemoth distribution $\sim \mathcal{K}_0(\mathcal{D}x) \longrightarrow$ width $\sim \mathcal{D}^{-1} \longrightarrow$ super-ETH scaling

Local operators are sums of $M \sim O(\mathcal{D})$ Behemoths. Using central limit theorem, width $\sim \sqrt{M}\mathcal{D}^{-1} \sim \mathcal{D}^{-1/2} \longrightarrow$ ETH scaling

A 'typical' operator is dense, $M > O(\mathcal{D})$ If $M \sim O(\mathcal{D}^{1+\beta})$, width (using CLT) $\sim \mathcal{D}^{-1/2+\beta/2} \longrightarrow$ sub-ETH scaling If $M \sim O(\mathcal{D}^2)$, width $\sim \mathcal{D}^0$

ETH works because physical operators are sparse.

 $\begin{pmatrix} \mathcal{D}^{-1/2} \text{ scaling works because} \\ \text{local operators have } M \sim O(\mathcal{D}) \end{pmatrix}$

Context ETH Scaling from sparsity of operator matrices

Temperature from Eigenvalues: Canonical temperature

Pretend: system is described by canonical dens.mat. $\rho_C = e^{-\beta H}$

$$E = \langle H \rangle = \frac{\operatorname{tr}(e^{-\beta H}H)}{\operatorname{tr}(e^{-\beta H})} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{\sum_{j} e^{-\beta E_{j}}} = \frac{\sum_{j} e^{-\beta E_{j}} E_{j}}{Z(\beta)}$$

- \star Provides a map, temperature \leftrightarrow energy
- * Based on eigenvalues only
- * Doesn't care about eigenstate physics!
- ★ Temperature from eigenstate?

- \star ETH \longrightarrow "every eigenstate knows its temperature"
- * Is $\rho = |E_n\rangle\langle E_n|$ close to $e^{-\beta H}$, for some β ?

- \star ETH \longrightarrow "every eigenstate knows its temperature"
- * Is $\rho = |E_n\rangle\langle E_n|$ close to $e^{-\beta H}$, for some β ? NO

- \star ETH \longrightarrow "every eigenstate knows its temperature"
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>close</u> to $e^{-\beta H}$, for some β ? NO
- * Is $\rho = |E_n\rangle\langle E_n|$ closest to $e^{-\beta H}$, for the correct β ?

- \star ETH \longrightarrow "every eigenstate knows its temperature"
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>close</u> to $e^{-\beta H}$, for some β ? NO
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>closest</u> to $e^{-\beta H}$, for the correct β ?
- * Eigenstate temperature: $\beta_E = \underset{\beta}{\operatorname{argmin}} d_p(\rho, \rho_C)$

- \star ETH \longrightarrow "every eigenstate knows its temperature"
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>close</u> to $e^{-\beta H}$, for some β ? NO
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>closest</u> to $e^{-\beta H}$, for the correct β ?
- * Eigenstate temperature: $\beta_E = \underset{\beta}{\operatorname{argmin}} d_p(\rho, \rho_C)$

- \star ETH \longrightarrow "every eigenstate knows its temperature"
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>close</u> to $e^{-\beta H}$, for some β ? NO
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>closest</u> to $e^{-\beta H}$, for the correct β ?
- * Eigenstate temperature: $\beta_E = \underset{\beta}{\operatorname{argmin}} d_p(\rho, \rho_C)$

- * Expect min $d_p \approx 2$
- * Minimum at correct temperature?

*
$$\beta_E \approx \beta_C$$
? $\beta_E = \beta_C$?

- $\star\,$ Full eigenstate being thermal $\,\,\longrightarrow\,\,$ far too ambitious
- \star But subsystem A (smaller than half the system) should be close to thermal?

- \star Full eigenstate being thermal \longrightarrow far too ambitious
- \star But subsystem A (smaller than half the system) should be close to thermal?
- * Is $\rho^A = \operatorname{tr}_B(\rho) = \operatorname{tr}_B |E_n\rangle \langle E_n|$ closest to $\rho^A_C = \operatorname{tr}_B(e^{-\beta H})$, for the correct β ?

- \star Full eigenstate being thermal \longrightarrow far too ambitious
- \star But subsystem A (smaller than half the system) should be close to thermal?
- * Is $\rho^A = \operatorname{tr}_B(\rho) = \operatorname{tr}_B |E_n\rangle \langle E_n|$ closest to $\rho^A_C = \operatorname{tr}_B(e^{-\beta H})$, for the correct β ?
- * Subsystem temperature: $\beta_{S} = \underset{\beta}{\operatorname{argmin}} d_{\rho} \left(\rho^{A}, \rho^{A}_{C} \right)$

- \star Full eigenstate being thermal \longrightarrow far too ambitious
- \star But subsystem A (smaller than half the system) should be close to thermal?
- * Is $\rho^A = \operatorname{tr}_B(\rho) = \operatorname{tr}_B |E_n\rangle \langle E_n|$ closest to $\rho^A_C = \operatorname{tr}_B(e^{-\beta H})$, for the correct β ?
- * Subsystem temperature: $\beta_{S} = \underset{\beta}{\operatorname{argmin}} d_{\rho} \left(\rho^{A}, \rho^{A}_{C} \right)$

- \star Full eigenstate being thermal \longrightarrow far too ambitious
- \star But subsystem A (smaller than half the system) should be close to thermal?
- * Is $\rho^A = \operatorname{tr}_B(\rho) = \operatorname{tr}_B |E_n\rangle \langle E_n|$ closest to $\rho^A_C = \operatorname{tr}_B(e^{-\beta H})$, for the correct β ?
- * Subsystem temperature: $\beta_{S} = \underset{\beta}{\operatorname{argmin}} d_{p} \left(\rho^{A}, \rho_{C}^{A} \right)$

- * Minimum at correct temperature?
- * $\beta_S \approx \beta_C$? $\beta_S = \beta_C$? in some limit?
- * min $d_p \approx 0$? min $d_p \rightarrow 0$ in some limit?
- * Which limit?

* Lattice systems, finite Hilbert space.

Eigenspectrum has a bottom and a top

* Lattice systems, finite Hilbert space. Eigenspectrum has a bottom and a top * Strongly chaotic/ ergodic/ thermalizing systems $\langle \tilde{r} \rangle \approx 0.53$

- \star Lattice systems, finite Hilbert space. Eigenspectrum has a bottom and a top
- \star Strongly chaotic/ ergodic/ thermalizing systems $\langle ilde{r}
 angle pprox 0.53$
- * L-site chains, spin-1/2 or qubits, Hilbert space dimension $D = 2^{L}$.

- * Lattice systems, finite Hilbert space. Eigenspectrum has a bottom and a top
- \star Strongly chaotic/ ergodic/ thermalizing systems $\langle ilde{r}
 angle pprox 0.53$
- * L-site chains, spin-1/2 or qubits, Hilbert space dimension $D = 2^{L}$.
- \star For simplicity: no conserved quantities; Hilbert space is tensor product.

$$D_A = 2^{L_A} \qquad D_B = 2^{L_B}$$
$$D = D_A D_B$$

- \star Lattice systems, finite Hilbert space. Eigenspectrum has a bottom and a top
- \star Strongly chaotic/ ergodic/ thermalizing systems $\langle ilde{r}
 angle pprox 0.53$
- * L-site chains, spin-1/2 or qubits, Hilbert space dimension $D = 2^{L}$.
- \star For simplicity: no conserved quantities; Hilbert space is tensor product.

- \star Ising chain, transverse + longitudinal magnetic fields on each site
- * XXZ chain, staggered transverse + longitudinal fields
- * XXZ chain with disordered transverse + longitudinal magnetic fields
Distance measures

Schatten *p*-norm

* Shatten *p*-norm of a matrix *M*, in terms of its singular values s_n :

$$\|M\|_p = \left(\sum_n s_n^p\right)^{1/\mu}$$

$$\star p = 1 \longrightarrow \text{trace norm}$$

 $\star p = 2 \longrightarrow$ Frobenius norm or Hilbert-Schmidt norm

Distance measures

Schatten *p*-norm

* Shatten *p*-norm of a matrix *M*, in terms of its singular values s_n :

$$\|M\|_{P} = \left(\sum_{n} s_{n}^{P}\right)^{1/p}$$

$$\star p = 1 \longrightarrow \text{trace norm}$$

 $\star p = 2 \longrightarrow$ Frobenius norm or Hilbert-Schmidt norm

Schatten *p*-distance

$$d_{p}(M,Q) = \left\| \frac{M}{\|M\|_{p}} - \frac{Q}{\|Q\|_{p}} \right\|_{p} \in [0,2]$$

p-norm of difference between *p*-normalized matrices.

- * β_E minimizes $d_p(\rho, \rho_C) = d_p(|E_n\rangle \langle E_n|, e^{-\beta H})$
- ★ Express both DMs in eigenstate bases.
 Set derivative w.r.t. β to zero.

$$\longrightarrow \quad E_n = \frac{\operatorname{tr}(He^{-p\beta H})}{\operatorname{tr}(e^{-p\beta H})}$$

- * β_E minimizes $d_p(\rho, \rho_C) = d_p(|E_n\rangle \langle E_n|, e^{-\beta H})$
- ★ Express both DMs in eigenstate bases.
 Set derivative w.r.t. β to zero.

$$\longrightarrow \quad E_n = \frac{\operatorname{tr}(He^{-p\beta H})}{\operatorname{tr}(e^{-p\beta H})}$$

$$\beta_E = \beta_C / p$$

- * β_E minimizes $d_p(\rho, \rho_C) = d_p(|E_n\rangle \langle E_n|, e^{-\beta H})$
- ★ Express both DMs in eigenstate bases.
 Set derivative w.r.t. β to zero.

$$\longrightarrow \quad E_n = \frac{\operatorname{tr}(He^{-p\beta H})}{\operatorname{tr}(e^{-p\beta H})}$$

- * $\beta_E = \beta_C$ for trace distance
- * $\beta_E = \beta_C/2$ for Hilbert-Schmidt distance

- * β_E minimizes $d_p(\rho, \rho_C) = d_p(|E_n\rangle \langle E_n|, e^{-\beta H})$
- ★ Express both DMs in eigenstate bases.
 Set derivative w.r.t. β to zero.

$$\longrightarrow \quad E_n = \frac{\operatorname{tr}(He^{-p\beta H})}{\operatorname{tr}(e^{-p\beta H})}$$

- * $\beta_E = \beta_C$ for trace distance
- * $\beta_E = \beta_C/2$ for Hilbert-Schmidt distance
- Mathematical result holds for any system (even non-chaotic, random-matrix,...)

- * β_{E} minimizes $d_{p}(\rho, \rho_{C}) = d_{p}(|E_{n}\rangle\langle E_{n}|, e^{-\beta H})$
- ★ Express both DMs in eigenstate bases.
 Set derivative w.r.t. β to zero.

$$\longrightarrow \quad E_n = \frac{\operatorname{tr}(He^{-p\beta H})}{\operatorname{tr}(e^{-p\beta H})}$$

- * $\beta_E = \beta_C$ for trace distance
- * $\beta_E = \beta_C/2$ for Hilbert-Schmidt distance
- Mathematical result holds for any system (even non-chaotic, random-matrix,...)
- * Determined by eigenvalues alone

- * β_{E} minimizes $d_{p}(\rho, \rho_{C}) = d_{p}(|E_{n}\rangle\langle E_{n}|, e^{-\beta H})$
- ★ Express both DMs in eigenstate bases.
 Set derivative w.r.t. β to zero.

$$\longrightarrow \quad E_n = \frac{\operatorname{tr}(He^{-p\beta H})}{\operatorname{tr}(e^{-p\beta H})}$$

$$\beta_E = \beta_C / p$$

- $\star \ \beta_{\textit{E}} = \beta_{\textit{C}} \ \text{for trace distance}$
- * $\beta_E = \beta_C/2$ for Hilbert-Schmidt distance
- Mathematical result holds for any system (even non-chaotic, random-matrix,...)
- * Determined by eigenvalues alone

For small β_C min $d_p \approx 2^{1/p}$ close to max for p = 1, 2

Eigenstate temperature — staggered-field XXZ

Eigenstate temperature — staggered-field XXZ

Eigenstate temperature — staggered-field XXZ

★ No sweeping analytical results. 🤤

* No sweeping analytical results. 😌 Trace operation tricky.

★ No sweeping analytical results. ☺ Trace operation tricky. Numerical observations only:

$$\beta_{S} = \underset{\beta}{\operatorname{argmin}} d_{\rho} \left(\rho^{A}, \rho_{C}^{A} \right)$$
$$\rho^{A} = \operatorname{tr}_{B} |E_{n}\rangle \langle E_{n}| \text{ and } \rho_{C}^{A} = \operatorname{tr}_{B} (e^{-\beta H})$$

★ No sweeping analytical results. ☺ Trace operation tricky. Numerical observations only:

* For $L_A \leq L/2$, β_S clusters around β_C

$$\beta_{S} = \underset{\beta}{\operatorname{argmin}} d_{\rho} \left(\rho^{A}, \rho^{A}_{C} \right)$$
$$\rho^{A} = \operatorname{tr}_{B} |E_{n}\rangle \langle E_{n}| \text{ and } \rho^{A}_{C} = \operatorname{tr}_{B} (e^{-\beta H})$$

★ No sweeping analytical results. ☺ Trace operation tricky. Numerical observations only:

- * For $L_A \leq L/2$, β_S clusters around β_C
- * $\beta_S \rightarrow \beta_C$ and $d_p \rightarrow 0$ in some limits:

$$egin{aligned} eta_{S} &= \operatorname*{argmin}_{eta} d_{p} \left(
ho^{A},
ho^{A}_{C}
ight) \ o^{A} &= \operatorname{tr}_{B} |E_{n}
angle \langle E_{n}| ext{ and }
ho^{A}_{C} &= \operatorname{tr}_{B}(e^{-eta H}) \end{aligned}$$

- ★ No sweeping analytical results. ☺ Trace operation tricky. Numerical observations only:
- * For $L_A \leq L/2$, β_S clusters around β_C

* $\beta_S \to \beta_C$ and $d_p \to 0$ in some limits: $\begin{cases}
\text{for } L \to \infty \text{ with constant } L_A, \\
\text{for } L \to \infty \text{ with const. } L_A/L < \frac{1}{2}
\end{cases}$

$$egin{aligned} eta_{S} &= \operatorname*{argmin}_{eta} d_{p} \left(
ho^{A},
ho^{A}_{C}
ight) \ D^{A} &= \operatorname{tr}_{B} |E_{n}
angle \langle E_{n}| ext{ and }
ho^{A}_{C} &= \operatorname{tr}_{B}(e^{-eta H}) \end{aligned}$$

○ 0

L=12 $L_A=4$

0.5

0.0

E/L

- ★ No sweeping analytical results. ☺ Trace operation tricky. Numerical observations only:
- * For $L_A \leq L/2$, β_S clusters around β_C
- $\star \ \beta_S \to \beta_C \text{ and } d_p \to 0 \text{ in some limits:} \begin{cases} \text{for } L \to \infty \text{ with constant } L_A, \\ \text{for } L \to \infty \text{ with const. } L_A/L < \frac{1}{2} \end{cases} \\ \text{Not so good:} \quad \text{fixed } L, \text{ increasing } L_A \end{cases}$

$$egin{aligned} eta_{S} &= \operatorname*{argmin}_{eta} d_{p} \left(
ho^{A},
ho^{A}_{C}
ight) \ D^{A} &= \operatorname{tr}_{B} |E_{n}
angle \langle E_{n}| ext{ and }
ho^{A}_{C} &= \operatorname{tr}_{B}(e^{-eta H}) \end{aligned}$$

- ★ No sweeping analytical results. ☺ Trace operation tricky. Numerical observations only:
- * For $L_A \leq L/2$, β_S clusters around β_C
- $\star \ \beta_S \to \beta_C \text{ and } d_p \to 0 \text{ in some limits:} \begin{cases} \text{for } L \to \infty \text{ with constant } L_A, \\ \text{for } L \to \infty \text{ with const. } L_A/L < \frac{1}{2} \end{cases} \\ \text{Not so good:} \quad \text{fixed } L, \text{ increasing } L_A \end{cases}$
- * Which distance? Doesn't seem to matter, broadly *p*-independent

$$eta_{S} = \operatorname*{argmin}_{eta} d_{
ho} \left(
ho^{A},
ho^{A}_{C}
ight)$$
 $ho^{A} = \operatorname{tr}_{B} |E_{n}\rangle\langle E_{n}| ext{ and }
ho^{A}_{C} = \operatorname{tr}_{B}(e^{-eta H})$

- ★ No sweeping analytical results. ☺ Trace operation tricky. Numerical observations only:
- * For $L_A \leq L/2$, β_S clusters around β_C
- $\label{eq:started} \star \ \beta_S \to \beta_C \ \text{and} \ d_p \to 0 \ \text{in some limits:} \ \left\{ \begin{array}{l} \text{for } L \to \infty \ \text{with constant} \ L_A, \\ \text{for } L \to \infty \ \text{with const.} \ L_A/L < \frac{1}{2} \end{array} \right. \\ \text{Not so good:} \quad \text{fixed } L, \ \text{increasing} \ L_A \end{array}$
- * Which distance? Doesn't seem to matter, broadly *p*-independent
- * Compare $\rho^A = \operatorname{tr}_B |E_n\rangle \langle E_n|$ with $e^{-\beta H_A}$, instead of $\rho^A_C = \operatorname{tr}_B(e^{-\beta H})$?

$$egin{aligned} eta_{S} &= \operatorname*{argmin}_{eta} d_{p} \left(
ho^{A},
ho^{A}_{C}
ight) \ o^{A} &= \operatorname{tr}_{B} |E_{n}
angle \langle E_{n}| ext{ and }
ho^{A}_{C} &= \operatorname{tr}_{B}(e^{-eta H}) \end{aligned}$$

- ★ No sweeping analytical results. ☺ Trace operation tricky. Numerical observations only:
- * For $L_A \leq L/2$, β_S clusters around β_C
- $\label{eq:started} \star \ \beta_S \to \beta_C \ \text{and} \ d_p \to 0 \ \text{in some limits:} \ \left\{ \begin{array}{l} \text{for } L \to \infty \ \text{with constant} \ L_A, \\ \text{for } L \to \infty \ \text{with const.} \ L_A/L < \frac{1}{2} \end{array} \right. \\ \text{Not so good:} \quad \text{fixed } L, \ \text{increasing} \ L_A \end{array}$
- \star Which distance? Doesn't seem to matter, broadly *p*-independent
- * Compare $\rho^A = \operatorname{tr}_B |E_n\rangle\langle E_n|$ with $e^{-\beta H_A}$, instead of $\rho_C^A = \operatorname{tr}_B(e^{-\beta H})$? Doesn't seem to make much difference.

Subsystem temperature — scaling

 $L \rightarrow \infty$, const $L_A = 2$ Disordered XXZ chain

Subsystem temperature — scaling

 $L \rightarrow \infty$, const $L_A = 2$ Disordered XXZ chain

E/L

Summary

Temperature from full eigenstate Compare $\rho = |E_n\rangle\langle E_n|$ with $\rho_C = e^{-\beta H}$ Which β minimizes distance? $\beta_{E} = \underset{\beta}{\operatorname{argmin}} \, d_{p}\left(\rho, \rho_{C}\right)$ "Eigenstate temperature" $\beta_E = \frac{\beta_C}{p}$ for all systems

Distance measure important

Temp from traced eigenstate Spatial partition, A BCompare $\rho^A = tr_B(\rho) = tr_B |E_n\rangle\langle E_n|$ with $\rho_C^A = tr_B(e^{-\beta H})$ or $e^{-\beta H_A}$

Which β minimizes distance?

$$\beta_{S} = \underset{\beta}{\operatorname{argmin}} d_{p} \left(\rho^{A}, \rho^{A}_{C} \right)$$

"Subsystem temperature"

 $\beta_S \longrightarrow \beta_C$ in t.d. limit for chaotic systems

Eigenstate temperature — random (GOE) matrix

Subsystem temperature — random (GOE) matrix

Eigenstate-based temperatures — full, 'microcanonical'

- \star ETH \longrightarrow "every eigenstate knows its temperature"
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>close</u> to $e^{-\beta H}$, for some β ? NO
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>closest</u> to $e^{-\beta H}$, for the correct β ?
- * Eigenstate temperature: $\beta_E = \underset{\beta}{\operatorname{argmin}} d_p(\rho, \rho_C)$
 - * maybe more reasonable: compare

$$ho_{MC} = \sum_{E_n \in \Delta E} |E_n\rangle \langle E_n| \qquad ext{with} \qquad e^{-eta H}$$

* Microcanonical variant of eigenstate temp:

$$\beta_{MC} = \underset{\beta}{\operatorname{argmin}} d_{p}(\rho, \rho_{C})$$

Eigenstate-based temperatures — full, 'microcanonical'

- \star ETH \longrightarrow "every eigenstate knows its temperature"
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>close</u> to $e^{-\beta H}$, for some β ? NO
- * Is $\rho = |E_n\rangle\langle E_n|$ <u>closest</u> to $e^{-\beta H}$, for the correct β ?
- * Eigenstate temperature: $\beta_E = \underset{\beta}{\operatorname{argmin}} d_p(\rho, \rho_C)$
 - * maybe more reasonable: compare

$$ho_{MC} = \sum_{E_n \in \Delta E} |E_n\rangle \langle E_n| \qquad ext{with} \qquad e^{-eta H}$$

* Microcanonical variant of eigenstate temp:

$$\beta_{MC} = \underset{\beta}{\operatorname{argmin}} d_{p} \left(\rho, \rho_{C} \right)$$

results \approx same as for single eigenstate

Temperature from entropy

$$\beta = \frac{\partial S}{\partial E}$$

Temperature from entropy

Closed system described by pure state \implies no entropy of full eigenstate

Temperature from entropy

 $\beta = \frac{\partial S}{\partial E}$

Closed system described by pure state \implies no entropy of full eigenstate

- * Option 1: Microcanonical entropy
 - Entropy from eigenvalues
 - another eigenvalue-based temperature
Temperature from entropy

 $\beta = \frac{\partial S}{\partial F}$

Closed system described by pure state \implies no entropy of full eigenstate

- * Option 1: Microcanonical entropy
 - Entropy from eigenvalues
 - another eigenvalue-based temperature
- * Option 2: Entanglement entropy
 - If S_A is entanglement entropy of L_A-sized system, expect

$$S \approx S_A\left(\frac{L}{L_A}\right)$$

- another eigenstate-based temperature

* $S = \log(\text{num. eigstates at energy } E)$

* $S = \log(\text{num. eigstates at energy } E)$

At energy E? $\in (E, E + \Delta E)$

★ Define Ω(E) → num. states with energy < E

$$S = \log \left[\Omega(E + \Delta E) - \Omega(E) \right]$$

* $S = \log(\text{num. eigstates at energy } E)$

At energy E? $\in (E, E + \Delta E)$

★ Define $\Omega(E)$ → num. states with energy < E

$$S = \log \left[\Omega(E + \Delta E) - \Omega(E)
ight]$$

 \star For accessible sizes, results strongly depend on choice of ΔE

* $S = \log(\text{num. eigstates at energy } E)$

At energy E? $\in (E, E + \Delta E)$

★ Define Ω(E) → num. states with energy < E

$$S = \log \left[\Omega(E + \Delta E) - \Omega(E)
ight]$$

- \star For accessible sizes, results strongly depend on choice of ΔE
- * Solutions: [Gurarie, Am. J. Phys (2007)]

* $S = \log(\text{num. eigstates at energy } E)$

At energy E? $\in (E, E + \Delta E)$

★ Define Ω(E) → num. states with energy < E

$$S = \log \left[\Omega(E + \Delta E) - \Omega(E)
ight]$$

- \star For accessible sizes, results strongly depend on choice of ΔE
- * Solutions: [Gurarie, Am. J. Phys (2007)]

- Redefine
$$S = \log \left(\frac{\partial \Omega}{\partial E}\right) \xrightarrow[]{eq} doesn't work well$$

- Use $\Delta E = (\text{const})\sqrt{CT^2}$, with $C = \partial E / \partial T$, heat capacity

Reason:

$$S = \beta E - \beta F(\beta) + \log(\Delta E/\sqrt{2\pi CT^2})$$

* $S = \log(\text{num. eigstates at energy } E)$

At energy E? $\in (E, E + \Delta E)$

★ Define Ω(E) → num. states with energy < E

$$S = \log \left[\Omega(E + \Delta E) - \Omega(E)
ight]$$

- \star For accessible sizes, results strongly depend on choice of ΔE
- * Solutions: [Gurarie, Am. J. Phys (2007)]

- Redefine
$$S = \log\left(\frac{\partial\Omega}{\partial E}\right)$$

 ▷ dimensions?
 ▷ doesn't work well

- Use $\Delta E = (\text{const})\sqrt{CT^2}$, with $C = \partial E / \partial T$, heat capacity

Reason:

$$S = \beta E - \beta F(\beta) + \log(\Delta E/\sqrt{2\pi CT^2})$$

Summary

Temperature from full eigenstate Compare $\rho = |E_n\rangle\langle E_n|$ with $\rho_C = e^{-\beta H}$ Which β minimizes distance? $\beta_{E} = \underset{\beta}{\operatorname{argmin}} \, d_{p}\left(\rho, \rho_{C}\right)$ "Eigenstate temperature" $\beta_E = \frac{\beta_C}{p}$ for all systems

Distance measure important

Temp from traced eigenstate Spatial partition, A BCompare $\rho^A = \operatorname{tr}_B(\rho) = \operatorname{tr}_B |E_n\rangle\langle E_n|$ with $\rho_C^A = \operatorname{tr}_B(e^{-\beta H})$ or $e^{-\beta H_A}$

Which β minimizes distance?

$$\beta_{\mathcal{S}} = \underset{\beta}{\operatorname{argmin}} \, d_{p} \left(\rho^{\mathcal{A}}, \rho^{\mathcal{A}}_{\mathcal{C}} \right)$$

"Subsystem temperature"

 $\beta_S \longrightarrow \beta_C$ in t.d. limit for chaotic systems