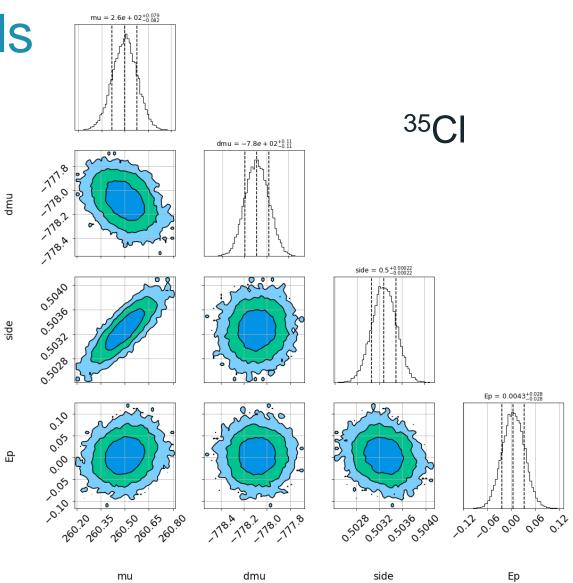
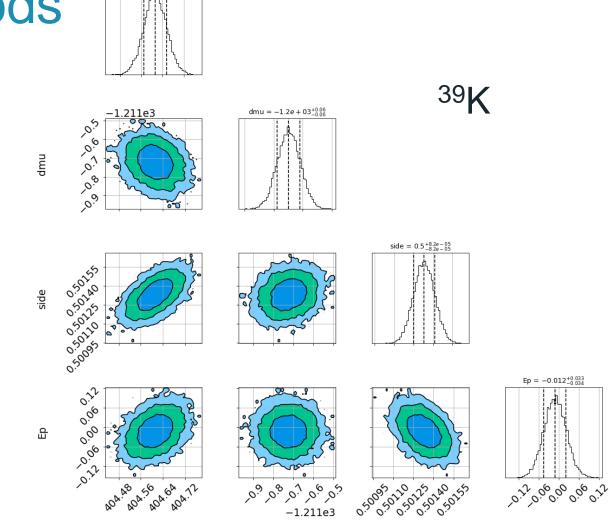


Update muX meeting 06/09

Michael Heines


Effect of hyperfine on 2p-1s extraction

- Underlying hyperfine remains
 unresolved
- What systematic do we induce by ignoring it
- Monte Carlo with calculations of HFS from Paul with Racah intensities


Fitting with same methods

- Bayesian fit:
 - $\mu = E_{2p_{3/2}-1s}$
 - $d\mu = E_{2p_{1/2}-1s} E_{2p_{3/2}-1s}$ • $side = \frac{I_{2p_{1/2}-1s}}{I_{2p_{3/2}-1s}}$ • $E_p = \frac{E_{2p_{3/2}-1s}+side \times E_{2p_{1/2}-1s}}{1+side}$
- Is E_p affected by HFS?

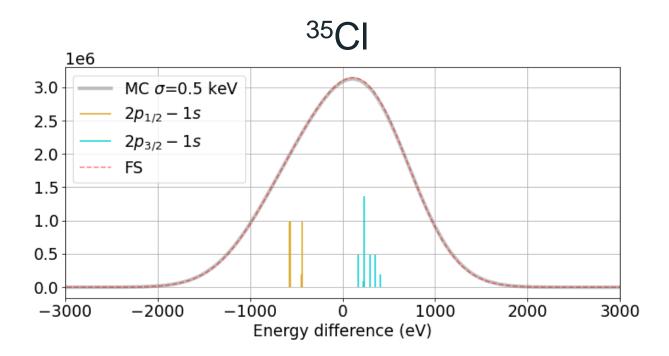
Fitting with same methods

- Bayesian fit:
 - $\mu = E_{2p_{3/2}-1s}$
 - $d\mu = E_{2p_{1/2}-1s} E_{2p_{3/2}-1s}$ • $side = \frac{I_{2p_{1/2}-1s}}{I_{2p_{3/2}-1s}}$ • $E_p = \frac{E_{2p_{3/2}-1s}+side \times E_{2p_{1/2}-1s}}{1+side}$
- Is E_p affected by HFS?

dmu

 $mu = 4e + 02^{+0.043}_{-0.042}$

mu



Ep

side

Table of deviations

Isotope	Deviation
³⁵ Cl	+ 4(28) meV
³⁷ Cl	+ 13(27) meV
³⁹ K	- 12(33) meV
⁴⁰ K	+ 14(34) meV
⁴¹ K	- 16(34) meV

Assuming $\sigma = 0.5 \ keV$, most detectors have worse resolution \rightarrow Less effect due to HFS

Table of deviations

Isotope	Deviation
³⁵ Cl	+ 4(28) meV
³⁷ Cl	+ 13(27) meV
³⁹ K	- 12(33) meV
⁴⁰ K	+ 14(34) meV
⁴¹ K	- 16(34) meV

40**K** 1e6 MC σ =0.5 keV 2.5 $2p_{1/2} - 1s$ 2.0 2p_{3/2} – 1s FS 1.5 1.0 0.5 0.0 -2000-1000-30001000 2000 3000 0 Energy difference (eV)

Assuming $\sigma = 0.5 \ keV$, most detectors have worse resolution \rightarrow Less effect due to HFS

