

Status of HEPS

Yuhui Dong (IHEP, CAS)

아이들은, 전문가 가지 않는 것이 않는

- Project overview
- Accelerator
- Beamlines
- Collaborations
- Future plans

Project overview

Landscape of the 4th-gen SR facilities

Yuhui Dong

Light sources in mainland China

Radiation Facility (1st-gen) Image: state state

中国地图

Beijing Synchrotron

- In operation: 5 light sources (3 SRs + 2 Linacs)
- Under constr.: 3 light sources (2 SRs + 1 Linac)
 - Planning, R&D: 4 light sources (3 SRs + 1 Linac)

High Energy Photon Source

Hefei Advanced Light Facility

Southern Adv. Photon Source

Yuhui Dong

High Energy Photon Source

Project outline

- A diffraction-limited SR light source (4th-gen)
- The 1st high-energy SR light source in China
- Location: Huairou Science City, Beijing
- Construction time: 06.2019 12.2025
- Land: 650,667 m², Building: 125,000 m²
- **Budget**: 4.76B CNY (~\$652M)(incl. materials, civil constr. & commissioning, excl. labor costs)
- **Support**: Central government + Local government + Chinese Academy of Sciences

SR: Synchrotron Radiation

HEPS in Huairou Science City (Beijing)

- World-class Original
 Innovation Area
- A new highland for strategic and forward-looking basic research
- A key area of Comprehensive National Science Center
- An eco-friendly and livable innovation demonstration zone

100.9 km²

5 large science facilities

Main parameters: accelerator

[1] Y. Jiao *et al.*, *J. Synchrotron Rad.* 25, 1611–1618 (2018).
[2] H. Xu *et al.*, *RDTM* 7, 279–287 (2023).
[3] C. Meng *et al.*, *RDTM* 4, 497–506 (2020).

Accelerator complex

- Linac (500 MeV)
- Booster (500 MeV to 6 GeV, 1 Hz)
- Storage ring (6 GeV, top-up)

Parameter	Value	Unit	
Beam energy	6	GeV	
Circumference	1360.4 m		
Lattice type	Hybrid 7BA		
Hori. Natural emittance	<60	pm∙rad	
Brightness	>1×10 ²²	*	
Beam current	200	mA	
Injection mode	Top-up	-	

*: phs/s/mm²/mrad²/0.1%BW

Main parameters: accelerator

L. Liu, H. Westfahl Jr., IPAC2017, TUXA1.

Main parameters: beamlines

- One of the brightest 4th-gen SR facilities in the world
- Brightness of 5×10²² phs/s/mm²/mrad²/0.1%BW at the photon energy of 21 keV, can provide X-ray with energy up to 300 keV
- 14 public beamlines in Phase 1, HEPS can accommodate up to 90 beamlines

Y. Jiao et al., J. Synchrotron Rad. 25, 1611–1618 (2018).

HEPS-TF and HEPS: two phases

	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
HEPS-TF	Pre	eparati	ion	E	Execution								
HEPS				Preparation				Consti	ruction	(6.5 y	rs.)		

HEPS project milestones

- 28.09.2016, Project settled in Huairou (Beijing)
- 15.12.2017, **Project proposal** approved by NDRC (CD0 equivalent)
- 28.12.2018, Feasibility study approved by NDRC (CD1 equivalent)
- 22.05.2019, **Preliminary design and budget** approved by NDRC (CD2 equivalent)
- 29.06.2019, Construction started in Huairou (CD3 equivalent)
- 31.12.2025, Construction completed, national acceptance (CD4 equivalent)

HEPS-TF (R&D project before HEPS)

• Schedule: 04.2016 - 10.2018, Budget: 321.6 M RMB (~48 M USD)

NDRC: National Development and Reform Commission

NOW

R&D and test infrastructure for HEPS

- RF lab: cleanroom, module assembly area, cavity & module test bunker, 400 cavity testing + 20 cryomodule testing per year capability, 2.5kW@4.5K or 300W@2K cryogenic system
- **Precision Magnet Technology Platform:** magnetic field measurement equipment and high-precision alignment equipment, 2500m² exp. hall
- Beam Test System: photocathode DC gun + 650MHz CM, 10MeV/1~10mA
- **NEG-coating facility**: 6 sets*4.2m + 4 sets*1.6m
- **Optical Metrology Lab**: Frequency-decomposed Stitching Interferometer (FSI), Flag-type Surface Profiler (FSP)
- Detector Lab: Sensor, ASIC, I/O
- Crystal Fabrication: Silicon Mono. Crystal, flat and Channel-cut silicon crystals, MLL, Kinoform lens

Yuhui Dong

- Groundbreaking in Jun. 2019
- Civil construction completed in Nov. 2021
- PAPS completed in May 2021, currently in operation
- Booster installation completed in Jan. 2023
- Linac commissioning completed in Mar. 2023
- Booster commissioning completed in Nov. 2023
- Storage-ring installation completed in Jul. 2024
- Storage-ring commissioning started in Jul. 2024
- Beam current exceeds 10mA in storage ring in Aug. 2024

Injector commissioning

- LINAC: 500 MeV, max bunch charge > 7 nC
- BOOSTER: 500 MeV to 6 GeV, single bunch charge > 5 nC

Storage ring commissioning

PSI visit, Sep 26, 2024, Switzerland

Beamline installation & commissioning plan

- Group 1 beamlines: BM / IAU / IAW
- IDs installed in storage ring
- Installation and commissioning completed
- Control and data-acquisition software ready
- Photon beam commissioning scheduled in Oct. 2024
- Group 2 beamlines: IVU / CPMU / Apple knot / Mango
- Installation to be completed in the end of 2024
- Commissioning scheduled in Apr. 2025
- All front-ends, FOEs, Hutches are ready

	Hard X-Ray Imaging	IAW/Mango/IVU(G2)
	ТХМ	IAU
	XAFS	IAU
Group 1	Tender spectroscopy	BM
	Pink SAXS	IAU
	μ-Macromolecule	IAU
	Optics Test	IAW/CPMU(G2)
	Engineering Materials	СРМО
	Nano-probe	СРМО
	Structural Dynamics	СРМО
	High Pressure	IVU
Group 2	Nano-ARPES	Apple knot
	Hard X-ray Coherent	
	Scattering	100
	Low-Dimension Probe	IVU
	NRS&Raman	IVU

Accelerator

• Accelerator Physics group completed the physical design of the accelerator complex

HLA framework: Pyapas

Developed beam commissioning software and its underlying architecture

Pyapas framework

Yuhui Dong

X Sti X HayMa Oxforx3 (54

think the shirt

PSI visit, Sep 26, 2024, Switzerland

1654.30 1655.00 1655.30 1656.00 1656.30 1657.00 1657.30 1658.00 1658.30 1659.00 1659.30 17.00.00 17.00

and feller could be and

Magnet type	Abbr.	Qty
Longitudinal grad. dipole	BLG	245
Dip./quad. comb. magnet	BD/ABF	294
Quadrupole	QF/QD	686
Sextupole	SF/SD	294
Octupole	ОСТ	98
Fast corrector	FC	196
Magnet field measureme	ent syste	m
Rotating coil system	RCS	3
Hall probe system	HPS	3
Planar moving coil system	MCS	1
Stretched wire system	SWS	1
Trans. field meas. system	TFS	1

All magnets and measurement systems developed in-house by the Magnet group.

Features of key magnets & system

- BLG: permanent magnet, field tuning to 50 ppm, temperature compensation to 50 ppm/°C
- QF/QD: 80 T/m, $B_n/B_2 < 4 \times 10^{-4}$, harmonics compensated by "Magic finger"©
- RCS: based on coordinate measuring machine (CMM), automatic alignment with 10 µm precision
- MCS: automatic alignment with 20 μm precision

Measuring BD magnet with CMM based Rotating coil system

Measuring BLG magnet with Arm based planar moving coil system

Power Supplies	Qty.	Туре
Linac	51	DC
Trans.	123	DC
BS Bend.	4	DC+AC
BS Quad.	8	DC+AC
BS Sext.	6	DC+AC
BS Corrector	84	DC+AC
SR Quad.	960	DC
SR Sext.	12	DC
SR Oct.	4	DC
SR FC	384	DC+AC
SR Corr.	864	DC
IDs related	105	DC

All power supplies, DCCTs and digital controllers developed inhouse by PS group

• Features of the magnet power supply system

- **High precision** current-stable power supplies: long-term stability 10 ppm, accuracy 50 ppm, repeatability 20 ppm
- **High bandwidth** high precision fast corrector power supplies: smallsignal step response time 75us, current ripple 20ppm
- **High power dynamic** power supplies: tracking error 0.1% vs. operating value, from injection to extraction point
- In-house developed digital power supply controller and DCCT: all power supplies are fully digital-controlled with digital controllers and installed DCCTs as the current feedback component

Storage ring PS hall

Booster PS hall

Digi

DCCT

Yuhui Dong

Vacuum system: key components

SR requirement: 1.3e-7 Pa (dynamic)

Parameter	Value	Type/Qty
Thickness of electron beam window (a)	0.1 mm	3/4
Dimension of the booster vacuum chamber (b)	36*30*0.7 mm	87/423
Contact force of RF shielding bellows (c)	125±25 g	42/1125
Material of photon absorber (d)	C10100 C15715 C18150	11/288
Magnetic permeability of Stainless Steel vacuum chamber in storage ring (e)	1.02	7/532
Inner dimension of the CrZrCu vacuum chamber (f)	Di22mm Di22mm w/ antechamb er, Di8 mm, etc.	27/1019

Yuhui Dong

Vacuum system: NEG coating

Parameter	Value
Film thickness	1±30% µm
Composition of Ti/Zr/V	~30%
Film structure	Columnar
Pumping speed of H ₂	0.2-0.6 L/(s.cm ²)
Activation temperature	180-250 °C
Capacity of CO	>1.0 ×10 ⁻⁵ mbar·L/(s·cm ²)
Inner dimension of the coated chambers	Di22mm, Di22mm w/ antechamber, Di8mm, 8×22, etc.
Number of coated chambers	918

S/L/(s

In-house

Girder & Magnet support

SR magnet support system

• Ultra-high stability & micron-level motion resolution

→contradictory requirements

- Improve system stiffness : Self-developed wedge mechanism, high-stiffness concrete plinth & grouting installation process
- 288 support modules installed and met the requirements.
 - Eigen frequency: ≥70 Hz
 - Transmissibility: ≤1.05
 - Motion resolution : 1 μm

Parame	ters	Requirement
Desclution	X/Y	≤5µm
Resolution	Z	≤15µm
Adjusting	X/Z	±10mm
range Y		±7mm
Natural frequ	iency	≥54Hz

Wedge leveler

Yuhui Dong

RF system: booster

Parameter	Value	Unit
Beam energy	0.5-6	GeV
U ₀ @ 6 GeV	4.02	MeV
I _b @ 6 GeV	13	mA
RF frequency	499.8	MHz
RF voltage	2-8	MV
Rep. rate	1	Hz
RF power per cavity	70	kW

Features of the Booster RF system

- Cavity: 5-cell PETRA-type normal-conducting cavity (RI GmbH)
- HPRF: 100 kW SSA (joint dev.) + 150 kW circulator (procured)
- LLRF (in-house): digital LLRF (w/ beam: ±0.06%, ±0.04°)
- Setup: 6 cavities with individual SSAs, occupying 1.5 straights

P. Zhang et al., "Radio-frequency system of HEPS", Radiation Detection Technology and Methods 7, 159-170 (2023).

Yuhui Dong

RF system: storage ring

Parameter	Value	Unit
Beam energy	6	GeV
U ₀ (w/ IDs)	4.14	MeV
Beam current	200	mA
Fundamental RF		
RF frequency	166.6	MHz
RF voltage	5.14	MV
No. of cavities	5	-
RF power per cav.	170	kW
Q0 at 1.5MV	>1e9	-
Harmonic RF		
RF frequency	499.8	MHz
RF voltage	0.91	MV
RF power abs from beam	105	kW
Q0 at 1.75MV	>1e9	-

Features of the storage ring RF system

- Cavity (in-house): 166.6 MHz β=1 SC QWR (1.1e9 @ 1.6MV) + 499.8 MHz 1-cell SCC (2.6e9 @ 1.75MV), heavy HOM damping, individual cryostat per cavity
- World's 1st main accelerating cavity of β =1 SC quarter-wave type
- HPRF: 260 kW SSA (joint dev.), 300 kW circulator (joint dev.)
- LLRF (in-house): digital LLRF (±0.05%, ±0.1°, 1.2MV)
- Setup: each cavity with individual SSA, occupying 4.5 straights

166.6 MHz cryomodule 499.8 MHz cryomodule

SSA

[1] P. Zhang et al., Rev. Sci. Instrum. 90, 084705 (2019). [2] L. Guo et al., Rev. Sci. Instrum. 95, 074702 (2024).

Beam instrumentation system

Instrument	Linac	LB	BST	BR	RB	SR
BPM	10	8	80	11	11	578
ICT	7	2	-	2	2	-
DCCT	-	-	2	-	-	2
BCM	-	-	1	-	-	1
OTR/YAG	7	2	-	2	2	-
SLM	-	-	2	-	-	2
Tune	-	-	1	-	-	1
BLM	-	-	4	-	-	192
BBFB	-	-	3	-	-	3
Displacement	-	-	-	-	-	8
monitor						

Features of the BI system

- **BPM electronics** (**in-house**) resolution: SA 0.06 μm, FA 0.16 μm, TBT 0.39 μm
- BPM blocks (in-house): calibrated with a step of 0.5 μm in Goubau line stand, electro-mechanical offset STD 53 um (horizontal plane) and 52 um (vertical plane)
- Beam size measurement: KB mirror and pinhole, spatial resolution 2 µm
- Beam loss monitor (in-house): turn by turn beam loss data
- **BPM support (in-house)**: 1st-order frequency 66 Hz, thermal stability: ±20 nm

Yuhui Dong

Injection & Extraction system

BTS: SR 6GeV injection system
 STB: SR 6GeV extraction system
 (Bunch by bunch/on-axis swap out injection)

STB: Booster 6GeV injection system
 (Pulsed local bumped injection by 2 kickers)

BTS: Booster 6GeV extraction system
 (Bunch by bunch/fast extraction assisted by 4 slow bumpers)

□ LTB: Booster 0.5GeV injection system (Bunch by bunch/one turn/on-axis injection)

DC Septum Magnets (Lambertson magnet)

Parameters2	Unit	BST1-LSM	BST3/BST4-LSM	R48/R03-LSM
Quantity	-	1	2	2
Energy	GeV	0.5	6	6
Deflection angle	mrad	200	79.945	79.95
Insertion length	m	0.5	1.6	1.6
Magnetic field strength for injected/extracted beam	Т	0.7	1	\sim 1
Min. Septum thickness (including septum board, wall of beam pipes, installation gap)	mm	≤6	≤3.5	\$2
Field uniformity	-	<±0.05%	<±0.05%	<±0.1%
Leakage field	-	≤1×10 ⁻³	≤1×10 ⁻³	≤0.002T·m
Clearance of stored beam at lambertson (H×V) (refer to stored beam orbit)	mm	10×10	22×28	8×5
Clearance of inj.&ext. beam at lambertson (H×V) (refer to inj.&ext. beam orbit)	mm	22×28	10×3	6×1.4
Physical aperture of stored beam vacuum chamber	mm	28×28	28×28	10.5x5
Structure	-	In-air	In-air	Half-in-vacuum

PSI visit, Sep 26, 2024, Switzerland

Fast kicker and pulser

Parameters	Unit	injection	ex	traction	
Name	-	R03K1~5	R48K1~5	R48PK	
Total kick angle	mrad	1.6108		0.2~0.075	
Kick direction	-	Vertical		Horizontal	
Length of strip-line kicker electrode	mm	300)	300	
Gap between two electrodes	mm	8		16	
Quantity of Strip-line kicker	-	5	5	1	
Longitudinal space between strip-line kicker electrode	mm	6		-	
Odd mode impedance	Ω	50±1		50±1	
Even mode impedance	Ω	<65		<65	
Amplitude of electrical pulse (into 50Ω)	kV	±15		±7.5	
Bottom width of electrical pulse (3%-3%)	ns	<4 * <10		<10	
FWHM (50%-50%)	ns	>2 *	>4	>4	
Electrical Pulse Amplitude Stability	-	<2% (RMS)		<2% (RMS)	
Repetition rate (CW)	Hz	50		50	
Time jitter between electrical pulse and timing clock	ps	<200		<200	
Time jitter between channels (bipolar)	ps	<10	0	<100	

Accelerator control

Features of the Control system

- Control System Network Online IP :~9,000
- PV: ~400K
- Archiver Data Storage :150TB/year
- Power Supply:~2700
- Vacuum equipment: 1724
- Vacuum equipment Temperature sensors: ~4000
- Container-based PS Control
- IOT based Temperature sensor DAQ
- Comfortable CrontrolRoom
- ProxmoxVE OpenSource Hyper-Converged Cluster
 - Server Virtualization
 - High Availability (HA) Cluster
 - Ceph RBD Storage
 - SDN
- HuaWei High bandwidth low latency network

Insertion device system

Туре		No.	L [m]	Min. Gap [mm]	Max. peak field [T]	Min. phase error RMS [Degree]
In Air	IAU	4	5	11	0.88	4
in Air	IAW	2	1	11	1.64	-
In Vacuum	CPMU	6	2	5.2	1.35	3
	IVU	5	4	5.2	1.1	3
Special	AK	1	5	11	-	5
	Mango	1	1	11	1	-
Total		19				

• Highlight

- **CPMU12**: min. period length in the world, phase error and multiple error in the world's leading level
- **Mango wiggler**: completely new idea, offer a big radiation spot size for Large - field X-ray diagnosis and flaw detection
- **AK undulator**: realized by 4 arrays, both circular polarization and low on-axis heat load achieved

[1] X.Y. Li, et al., STATUS OF HEPS INSERTION DEVICES DESIGN, IPAC 2021, MOPAB090, P339-341.

Insertion device development

- **Progress on other projects**
- Superconducting ID: SCW, SCU15
- ID for European XFEL: U40
- ID for Hefei LS: QPU, Wiggler
- Phase shifter for EXFEL and Pohang LS
- **Magnetic measurement system**
- Hall bench: 2 in-Air, 2 in-vacuum
- Stretched wire: 3 in-Air, 2 in-vacuum
- Flipping coil: 1

3W1-SCW ran on BEPCII

SCU15

U40 ran on EXFEL

ID for HLS

PS for EXFEL

Hall bench in-vacuum for IVU

Beamlines

HEPS phase I beamlines list

	Beamlines	Features		
High	Engineering Materials	50-170keV, XRD, 3DXRD, SAXS, PDF		
Fneray	Hard X-Ray Imaging	10-300keV, Phase and Diffraction contrast imaging, 200mm large		
Lifergy	nara X Kay inaging	spot, 350m long, Mango Wiggler		
	NAMI-NanoProbe	Small probe, <10nm; In-situ nanoprobe, <50nm; 220m long		
Llink	Structural Dynamics	15-60keV, single-shot diffraction and imaging;		
High	Structural Dynamics	< 50nm projection imaging		
Brightness	High Pressure	110nm focusing, diffraction and imaging		
	Nano-ARPES	100-2000eV, 100nm focusing, 5meV@200eV, APPLE-KNOT U		
High	Hard X-ray Coherent Scattering	CDI(<5nm resolution), sub-µs XPCS		
Coherence	Low-Dimension Probe	Surface and interface scattering, surface XPCS		
	NRS&Raman	Nuclear Resonant Scattering and X-ray Raman spectroscopy		
	XAFS	Routine XAFS, plus 350nm spot and quick XAFS		
General	Tender spectroscopy	Bending magnet, 2-10keV spectroscopy		
beamlines	μ-Macromolecule	$1\mu m$ spot, standard and serial crystallography		
beamines	Pink SAXS	Pink beam, lest optics		
	Transmission X-ray Microscope	Full field nano imaging and spectroscopy		
Test BL	Optics Test	With undulator and wiggler source for optics measurement and R&D		

Engineering Materials Beamline (07U1A)

XRD

PDF

Dedicated to studying the physical and chemical properties of materials under real working conditions. By using highbrightness, high-energy X-rays and integrating a variety of on-site sample environments, it can provide rapid, nondestructive characterization across scales for **full-life cycle** material research.

SAMPLE

SYSTEM

single crystal

powder

polycrystal

amorphous

36

Yuhui Dong

MODE

time-resolved

grain-resolved

depth-resolved

scanning

grazing

Hard X-ray Nanoprobe Multimodal Beamline (NAMI, 19U1A)

NAMI is one of the long beamlines in HEPS. The total length is over 220m from the source. The feature of NAMI is the smallest beam size (<10nm) and multimodal coherent imaging methods.

PSI visit, Sep 26, 2024, Switzerland

Hard X-Ray Imaging Beamline (2111A)

Goals: High sensitivity, Deep penetration, Multiscale mesoscopic spatial resolution, Large FOV, Multiple contrast mechanisms and compatible with diverse sample environments. Probes: In-line phase contrast imaging; Diffraction Contrast Imaging Application: Biomedicine: whole organ mesoscopic imaging

Engineering Materials Fossils and Human Relics

Features: Large FOV and high Resolution

CPMU branch: 10-90 keV

Wiggler branch: 20keV—300keV

Flubbensh, 1000 phs/smrad*2/01%BW.

1 CPMU

1Wiggler + 1Mango Wiggler Longest Beamline in Phase I 350m long

Ratio of spot size and PSF increase from 2k to 20k, 1000 times of voxels one CT

High sensitivity at high resolution & deep penetration case, very small PSF

Yuhui Dong

Hard X-ray Coherent Scattering Beamline (09U1A)

- Optical Theory
- Optical metrology
- Optics Fabrication
- Optical Modulation
- X-ray detector

Supported by both HEPS and the Platform of Advanced Photon Source Technology R&D (PAPS)

Dynamical diffraction theory

Developed a general numerical framework for Xray diffractive optics based on the Takagi–Taupin (TT) dynamical theory with a general integral system of the TT equations formed for the FEA

Used in HEPS-TF and HEPS Yuhang Wang, et al. J. Appl. Cryst. (2024). 57 For high-energy-resolution/high-energy monochromators designs

Also used in HEPS-TF and HEPS^{Yuhang Wang et al.} Optics Express 28 (2020) For multilayer devices in B2 nano-probe/B3 dynamic structure/B6 high pressure

Double-edge Method for wavefront measurement

Overcome the wavefront blurring effect from:

- Low coherence source @ 1st G SR (eg. BSRF)
- Crystal extinction

Realize diffraction-limited level measurement in a Full beam range.

Mirror	Shape	Parameter	Specification	VAKB Measurement	HAKB Measurement
B4-AKB	Elliptical	Slope error	50prod	17nrad	30nrad
	Hyperbola	RMS	SUITAU -	26nrad	38nrad
	Elliptical	Height error	0.4pm/6pm	0.11nm/0.59nm	<mark>0.051nm</mark> /0.27nm
	Hyperbola	RMS/PV	0.40007 00000 -	0.12nm/0.70nm	<mark>0.052nm</mark> /0.35nm

FSP-Flag-type Surface Profiler

FSI-Frequency-decomposed Stitching Interferometer

Elliptical mirror FSI measuring result (B8-HKB)

Shape depth 57μm, Slope range 3.9mrad, Minimal radius 17m

FSI result for nano-focusing Mirror polishing (B3-VKB)

The Frequency-decomposed Stitching Interferometer (FSI) has been proposed and developed, which combines the SI & FSP, and can provide feedback for mirror processing with 2D subnanometer accuracy measurement.

The fabricated **flat and Channel-cut silicon crystals**

qualified sub-nanometer surface roughness, X-ray topography with uniform contrast

Spherically bent Si(660) ~1eV @9.7keV

Bent striped Si(660) ~0.53 eV@9.7keV

Mosaic-diced Si(553) ~0.037 eV@8.9keV

Analyzers for XRS and RIXS: excellent focusing & energy resolution

MLL Para.	Req.
Material	WSi ₂ /Si
N. Layer	13030/8030
Thickness	64µm/ 44µm
Focus	8×8nm ²

Shape error of 2D lens: 0.7µm RMS, 1D lens: 1.2µm RMS

1D & 2D diamond CRLs fabrication

MLL fabrication

X-ray active mirror using electric-heating

- Deformable mirror is fabricated by MEMS process
- Surface actuation ensures the deterministic deformation
- Modulation accuracy < 0.5 nm RMS has been achieved

Elliptical bending mirror

Large Flat mirror and Elliptical mirror is under going

	Measuring Results	
Effective length	1000mm	
Elliptical Bending shape	0.17.urad (alliptical)	
accuracy		

Bending shape accuracy 0.17µrad RMS

Stability: 72h, deformation 66nrad RMS

Yuhui Dong

PSI visit, Sep 26, 2024, Switzerland

2.5mm

3.0mm

2.5mm

VDCM

HDCM

Quick-scan DCM

HRM High energy resolution

Stability of VDCM <10nrad RMS Under cooling Stability of HDCM <20nrad RMS Under cooling Quick-scan DCM 100 XAFS spectra /s @50Hz 0.6° Deformation of crystals with clamping under cryo temperature < 0.1µrad RMS

Mirror Mechanical System (MMS)

Generic-MMS has been developed

white beam mirror (WBM), harmonic suppression mirror (HSM), combined deflecting mirror (CDM), bending mirror, Nano-KB, and transfocator, etc. .

- ➤ Multi-DOF bench: ≥100 Hz@1st eigenfrequency
- ➢ High stability: ≤25 nrad rms@1-120 Hz
- Fine pitch mechanism: ≤0.1 µrad @ res.
- > 20 pieces of equipment (batch production)

The transfocator has successfully developed and applied with batch fabrications of ≥20 sets at HEPS.

Transfocator is a special kind of manipulator of CRLs for the variable focus. A novel transfocator with compact is presented, which just employs two driver with orthogonal parallel layout instead of traditional series *N* sets of the driver corresponding to *N* sets of the switched arms.

Experimental result for the transfocator at BL09B at SSRF

In-house detector development

• A 6M system will be assembled before 2025

Specs	BPIX-20	BPIX-40
Pixel size	150µmX150µm	140µmX140µm
Pixel Array	104X72	128X96
Threshold	1	2
Gain	Fixed	2 bits tunable
Counting rate	> 2Mcps	> 2Mcps @ Med gain
Frame rate	1.2kHz	2kHz
Counting Depth	20 bit	14 bit
Detector Module	2X4 (208X288)	2X6 (256X576)
Module Gap	3mm by TSV	2.7mm by WB

In-house detector development

Length 4.8m× Width 4.3m× Height 3.3 m

XRS Spectrometer

"Qiankun(乾坤)"

- ▶ Working energy: ~10 keV Si(660),
 ~13 keV Si(880), ~16 keV Si(10 10
 0)
- Energy resolution ~0.7 eV @~10
 keV with 1 m Rowland circle
- 140 mm space for sample environment
- High-resolution IXS/RIXS/XES modes with 2m Rowland circle

Scientific software and computing

Mamba: A new generation synchrotron experiment operating software system

Unified framework for all HEPS beamlines

Unified data format and standards

DOMAS: Data Organization and Management Software

- Metadata catalogue, Metadata acquisition, Data transfer, Data service (User GUI)
- Data policy & Data format(HDF5)

Daisy: Data Analysis Integrated Software sYstem

- Basic, common, scalable framework
- Data engine, Workflow engine, Computing engine, GUI
- Released https://daisy.ihep.ac.cn/

Computing

Al for Science

□ Large AI model solves ptychographic phase retrieval problem

X.Y. Pan et al. Acta Physica Sinica, 2023

Physics-informed denoising solution

Image: state state

SAXS

Z.Z. Zhou et al. *npj Comp. Mater.*, 2023 Z.Z. Zhou et al. *Journal of Appl. Crystallogr.*, accepted

□ Clustering of Nano-ARPES experimental spectra

L.Z. Bian et al. Commun. Phys., under review

Physical information retrieval from massive diffraction data using machine learning methods

X. Zhao et al. *IUCrJ*, 2023

End-to-end image misalignment correction method for tomography

Z. Zhang et al. iScience, 2023

Deconvolution and super-resolution pipeline

C. Li et al. Nucl. Sci. Tech., accepted

Collaborations

International Advisory Committee

- Dec. 5-7, 2016, Beijing, 1st HEPS-TF IAC Meeting (Chair: Robert Hettel, SLAC)
- Nov. 15-17, 2017, Beijing, 2nd HEPS-TF IAC Meeting (Chair: Robert Hettel, SLAC)
- Dec. 11-14, 2018, Beijing, 1st HEPS IAC Meeting (Chair: Pedro Fernandez Tavares, MAX-IV)
- Dec. 16-18, 2019, Beijing, 2nd HEPS IAC Meeting (Chair: Pedro Fernandez Tavares, MAX-IV)
- Jan. 14-17, 2025, Beijing, 3rd HEPS IAC Meeting (Chair: Harald Reichert, DESY)

Collaborations

 MoU signed between HEPS and Sirius based on the joint statement on deepening comprehensive strategic partnership between China and Brazil.

(C) KEK SOLEIL

diamond

SPring.

34. Recalling that Brazil is one of the few countries with fourth-generation synchrotron light technology and that China is also developing fourth-generation synchrotron light technology, the two parties will work together to develop the next generation of synchrotron technology. They welcomed the cooperation between the National Centre for Research in Energy and Materials (CNPEM) of the Ministry of Science, Technology and Innovation of Brazil (MCTI) and the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS) for collaboration between Sirius and HEPS.

- IHEP signed MoU with DLS to cooperate on synchrotron radiation facility construction on April 17, 2019
- MoU between IHEP and NSRRC signed on Sep. 30, 2020.
- MoU between IHEP and RIKEN-SPring-8 was renewed in July, 2024.
- MoU between IHEP and PSI signed in 2009, appendix in 2018.

Experiments and reviews

May 2023 SPring-8 HEPS Vacuum-Mounted Flat-Diced Analyzer RIXS Sep. 2023 Diamond HEPS CRL tested online

June 2023 ESRF ID16B Ni-based alloy materials, holotomography, 6 shifts

International reviews on optical design of beamlines, HEPS RF system, HEPS injector design

International conferences and workshops

IBIC 2024--13th International Beam Instrumentation Conference

MEDSI2023--12th International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation

LINAC 2018--29th Linear Accelerator Conference

Meeting Rooms, Hostel and Canteen in HEPS campus

Helmholtz Association

CERN Council Chair

HGTD week

Nobel Laureate Prof. D. Gross

KEK DG

CEPC IAC

Elettra Sincrotrone Trieste

高能同

RF international review

SLS and ETH Zurich

HEPS HX-HERS team at SPring-8

•

HEP

Future plans

- Preparing Science Case and Project Proposal for the next 5-year plan
- Multiple reviews underway
- ✓ Criteria for HEPS beamline selection: Scientific and Industrial questions as well as cutting-edge experimental methods motivated in 4GSR.
- ✓ Upon schedule of insertion installation, without impeding the operation of existing BLs, 4-5 ID installed per year
- ✓ 30 BLs to be built in Phase II

- Organizing institutionalization research teams/projects based on HEPS
- ✓ Materials
- Chemistry (Dynamic properties of catalysis)

~90 Total capacity

14 IDs+ 3 BMs Phase I

~15 IDs+ 15 BMs Phase II

HEPS phase II beamlines

Candidate bea	mlines in Phase II (38	preliminary)
Pink beam Nano-Coherent Imaging	ED-XAFS	Soft RIXS
High Energy X-ray Nano Coherent Imaging	Environment Spectroscopy	HE-NRS
Fly-scan Nano Coherent Imaging	High resolution powder diffraction	nano-NRS bemaline
Surface Interface Nano Coherent Imaging	High energy total scattering	Magnetic Material
Pink beam Coherent Imaging and Scattering	Large volume (multi-anvil cell) high-pressure (LVP)	High Magnetic field Nano- Coherent Imaging
Chemical Catalysis Nano-Coherent Imaging	High-pressure (DAC) synergic method	High-throughput Protein Crystallography for drug screening
High Energy-XPCS	Chemical crystallography	ED-XRD for material genome
Multiscale diffraction imaging	Laue crystallography	Material Synergy
High Energy Compton Scattering and Imaging	SAXS for Industrial application	Energy materials and devices Multimodal
X-ray Chemical imaging	High energy SAXS	Energy materials and devices multimodal spectroscopy
Biomedical 3D imaging	Hard X-ray PES	Earth/planetary Science
Flat Samples 3D Nondestructive Imaging	High Energy Resolution IXS	Multispectral X-ray lithography
High-throughput XAFS	Medium Energy Resolution RIXS	

Beamline built in Phase I

Hard X-ray nanoprobe multimodal beamline
Engineering materials beamline
Structural dynamics beamline
Hard X-ray coherent scattering beamline
Hard X-ray high resolution spectroscopy beamline
High pressure beamline
Hard X-ray imaging beamline
X-ray absorption spectroscopy beamline
Low-dimensional structure probe beamline
Microfocusing X-ray protein crystallography beamline
Pink beam SAXS beamline
High resolution nanoscale electronic structure beamline
Tender X-ray beamline
Transmission X-ray microscopic beamline

	Material	Physics	Chemistry	Envir.	Energy	Industry	Bio.	Meth.
Phase II	3 IDs, 3 BMs	5 ID, 1 BMs	1 ID, 5 BMs	2 IDs	2 IDs, 1 BM	1 ID, 4 BMs	2 BMs	2 IDs

International collaborations

HEPS is open to global users •

- \checkmark HEPS beamtime applications open to scientists from around the world, reviewed by SAC (international experts)
- ✓ 5-10 invited user teams, new technologies and methods, guaranteed beamtime, evaluation criteria, more funding opportunities

International collaborations on SR technologies •

- \checkmark X-ray Optics, Detectors, AI for Sciences
- ✓ HEPS and Sirius joint LAB (under construction)
- ✓ HEPS and MAX-IV, DLS, SPring-8
- ✓ Global calls for proposals of HEPS new beamlines
- \checkmark Strong interests joining international collaboration programs, for example: Human Organ Atlas, European X-ray Connectomics Alliance

Schemes

- \checkmark International exchanges and agreement, collaborative research (PIFI, etc.)
- \checkmark IAC meeting (MAC and SAC in 2026), regular international review meetings, international summer schools, international conferences

Inclusive

Open Collaborative

- PSI and IHEP signed MoU in 2009 on comprehensive collaborations
 - Appendix to the MoU on beam instabilities signed in 2018 (valid until 30.06.2021)
 - Renewal of the MoU covering more topics of mutual interests?
- Expert from SLS joined the international review of the HEPS beamlines
 - Suggest a replacement of Philip Willmott for HEPS IAC due to his absence
- Welcome PSI colleagues to join the commissioning of HEPS accelerator and beamlines (the SR will restart commissioning on Oct 6th, 2024)

- Potential collaborations between HEPS and PSI
 - Accelerator physics, collective effects, etc.
 - Accelerator hardware: RF, undulator, control, ...
 - Hard-X-ray imaging beamline: Interests in fast CT in Tomcat beamline and Tomcat's interests in HEPS's large field-of-view high-resolution optical coupling system for imaging detector.
 - Nanoprobe beamline: Lamino ptychography and multi-beam ptychography methodologies and its applications in archeology and biomedical imaging.
 - Hard X-ray High Energy Resolution Spectroscopy beamline: Interests in small pixel size MÖNCH detector for high-resolution RIXS. X-ray RIXS spectrometer instrumentation with SwissFEL Bernina beamline.
 - Nano-ARPES beamline: Interests in ADRESS beamline.

HEPS is in good shape to have its first light in 2024

