Contribution ID: 46 Type: Poster ## Modification of Borophosphate Glass Composition for Joint Thermal Processing with Molybdenum Oxide for Development of Solar Cell Coatings Friday, November 8, 2024 4:12 PM (3 minutes) Glasses based on borophosphate with the formula (45-0.5x)P2O5-xB2O3-10,0MoO3-(45-0.5x)Na2O where \boxtimes = 20,0-60,0 have been manufactured using the melt-quenching methodology. Molybdenum oxide alone does not rank among glass-forming oxides, but it is able to enter the glass structure in the form of MoO4 tetrahedra or MoO6 octahedra with some glass-forming oxides, like P2O5. The regularities of phosphate-borate glasses modified with molybdenum(VI) oxide with the following composition: (45-0.5x)P2O5-xB2O3-10.0MoO3-(45-0.5x)Na2O (x = 20.0-60.0) have been carried out and it is shown that an increase in B2O3 concentration from 45 to 60% mol. is accompanied by an increase in the hygroscopicity of the obtained amorphous materials. To modify the optical properties of the glass, 10% mol of MoO3 has been added to its composition, because with a higher content of this modifier, oxidation-reduction processes Mo(VI) \longrightarrow Mo(V) with loss of transparency of the resulting glass is expected. In order to design luminescent coatings that effectively absorb in the UV region of the spectrum, an activator of 0.1% mol Eu2O3 was introduced into the composition of glasses (45-0.5x)P2O5-xB2O3 -10.0MoO3 -(45-0.5x)Na2O where x=20-40. As a result of the study, it was found that under the condition of exposure of melts of the composition (44.95-0.5x)P2O5-xB2O3 -10.0MoO3 -(44.95-0.5x)Na2O - 0.1Eu2O3 (x=20.0-60.0) solubility of europium oxide decreases with increasing B2O3 content. The glassws has been characterized by IR and luminescence spectroscopy, diffuse reflectance spectroscopy and X-ray powder analysis. It is shown that glass 34.95P2O5 –20.0B2O3 -10.00MoO3 –34.95Na2O –0.1Eu2O3, which is effectively excited by UV radiation, is the most promising for modeling UV to visible light convertors. ## Type of presence Presence at Taras Shevchenko National University Primary author: Mrs SAIENKO, Liliia (Taras Shevchenko National University of Kyiv) Co-authors: Mrs TEREBILENKO, Kateryna (Taras Shevchenko National University of Kyiv); Dr SLOBODYANIK, Mykola (Taras Shevchenko National University of Kyiv) Presenter: Mrs SAIENKO, Liliia (Taras Shevchenko National University of Kyiv) Session Classification: Poster Session