R&D on an active photon converter

Rei Sakakibara

Future experiment of $\mu^+ \rightarrow e^+ \gamma$ search

- The intensity of muon beam at PSI is planned to be increased to $\sim 10^{10} \,\mu^+/s$
- R&D of new detectors with good resolutions & high rate capability is necessary
- Accidental background rate :

 $N_{acc} \propto R_{\mu}^2 \cdot \Delta E_{\gamma}^2 \cdot \Delta p_e \cdot \Delta \theta_{e\gamma}^2 \cdot \Delta t_{e\gamma} \cdot T \xrightarrow{\Delta E_{\gamma}, \Delta p_e, \Delta \theta_{e\gamma}, \Delta t_{e\gamma}}{}^{\Delta E_{\gamma}, \Delta p_e, \Delta \theta_{e\gamma}, \Delta t_{e\gamma}} : \text{detector resolutions}$

 R_{μ} : muon stopping rate

 \rightarrow photon energy resolution is important for background suppression

 For photon measurement, pair spectrometer with active converter is under development

Pair spectrometer with active converter

problem with conventional pair-spectrometer

- \int low efficiency (compared to calorimeter) \rightarrow want to increase thickness
- L energy loss in converter
 → want to reduce thickness
 → solution : energy measurement by converter (active converter)
 <u>requirements for active converter</u>

$$\frac{\Delta E}{E} < 0.4$$
 % at signal region ($E = 52.8$ MeV) & $\Delta t < 30$ ps for pair spectrometer

 $N_{\rm p.e.} > 670$ p.e. (3mm thickness converter) & $\Delta t < 30 \text{ ps} \times \sqrt{2} \sim 40 \text{ ps}$ for 1 MIP

Converter material & thickness

- · Conversion probability and efficiency was simulated with four candidate material
- LYSO had the best performance among the candidates
- 3 mm thickness had the highest efficiency

Converter segmentation

- Converter will be segmented to avoid pile-up
- From the simulation study,
 3 x 5 x 50 mm segmentation size will be best in terms of efficiency &number of readout channels

Active converter prototype

LYSO

- 3 mm thickness \times 5 mm width \times 50 mm length (standard size)
- FTRL type (less lightlyield and faster response than normal type)

<u>SiPM</u>

- Hamamatsu MPPC
- Three different pixel pitch (50 um(<u>S14160-3050HS</u>), 15 um(<u>S14160-3015PS</u>), 10 um(<u>S14160-3010PS</u>))

readout method

- 1. independent readout ... three SiPMs readout independently
- 2. series readout...three SiPMs connected in series

series readout

Electron beam test

- Electron beam at KEK PF-AR Test beam line
 Beam momentum ~ 3 GeV
 Beam rate ~ 4.5 kHz
- **DAQ**: Wave Dream Board (sampling rate :4 GHz)
- Studied items
 - Comparison of various prototypes (LYSO size, readout method)
 - Investigation of injection angle/position dependence of the performance

Future $\mu \rightarrow e\gamma$ Meeting

5 mm cube plastic timing counter for

- trigger (coincidence of up & down TC)
- time reference

e- beam MPPC MPPC MPPCx3 MPPCx3

Lightyield

number of events

60

40

20

10000

- Lightyield analysis was done with the low gain beam data
- Lightyield was far beyond the target

20000

Future $\mu \rightarrow e\gamma$ Meeting

10000

number of photoelectron [p.e.]

5000

15000

October 3, 2024

20000

number of photoelectron [p.e.]

0⊾ 0

30000

*in this analysis, gain of the electronics is assumed to be the nominal value

10000

20000

number of photoelectron [p.e.]

30000

10000 20000 30000 40000 5000

number of photoelectron [p.e.]

pedestal

Time resolution analysis method

time resolution analysis result - LYSO size -

	Standard size (3 mm×5 mm×50 mm)	Half thickness (1.5 mm×5 mm×50 mm)	Double width (1.5 mm×5 mm×50 mm)	Double length (3 mm×5 mm×100 mm)
Independent readout	27.0 ps	36.1 ps	26.5 ps	30.4 ps
Series readout	29.4 ps	(no data taken)	27.6 ps	(no data taken)

- Basically, LYSO size that had larger lightyield has better time resolution
- Independent readout has slightly better resolution by a few ps
 - This is due to the difference in the remaining time walk effect after correction
 - Correlation between timing of left channels and right channels →
 - ...stronger on series connection

coul

250

220.5/94

269.2 ± 4.2

– t_{ref} [ns]

time resolution analysis result – angle dependence –

time resolution analysis result – position dependence –

• Tested MPPCs with different pixel pitch 290_{F}^{++++++}

- 10 μm (<u>S14160-3010PS</u>)
- 15 μm (<u>S14160-3015PS</u>)
- 50 μm (<u>S14160-3050HS</u>)

- 50 μm pixel pitch shows the best performance because of
 - high gain
 - high PDE

time resolution analysis result – pixel pitch comparison– 3x10x50F independent (using Up TC)

summary and prospect

summary

- Pair spectrometer with active converter is under R&D as a photon detector for the future experiment for $\mu^+ \rightarrow e^+ \gamma$ decay search.
- The beamtest result shows that requirement of energy and time resolution for a converter can be well achieved with LYSO.

prospect

- In the future experiment, timing and energy must be measured at the same time
 Possibility of improving the time walk correction using charge information

Next beam test with high gain & low gain DAQ at the same time (planned in Nov – Dec 2024)

backup

KEK PF-AR test beam line

deposit energy by electron in different energy

- deposit energy in LYSO was simulated with various electron beam energies
- deposit energy in LYSO of 3 GeV electron was almost identical to that of 25 GeV electron

the resolution obtained in the beam test could be applied to the future experiment

requirements for the active converter

energy resolution

• $\frac{\Delta E}{E} \le 0.4 \%$ @E = 52.8 MeV for pair spectrometer

$$\rightarrow \Delta E \leq 211 \text{ keV for } 2 \text{ MIP}(e^+ \& e^-)$$

• deposit energy of 2 MIP: $E' = 1.12 \text{ MeV/mm} \times 3 \text{ mm} \times 2 = 6.72 \text{ MeV} \text{ (in 3 mm thickness LYSO)}$ $\rightarrow \frac{\Delta E}{E'} = \frac{1}{\sqrt{N_{\text{p.e.}}}} \leq \frac{211 \text{ keV}}{7.72 \text{ MeV}} = 2.73 \%$ $\rightarrow N_{\text{p.e.}} \geq 1341 \text{ for 2 MIP}$ $\rightarrow N_{\text{p.e.}} \geq 671 \text{ for 1 MIP}$

time resolution

• $\Delta t = 30 \text{ ps}$ for pair spectrometer $\rightarrow 30 \times \sqrt{2} = 42 \text{ ps}$ for 1 MIP

lightyield analysis method

- estimate 1 p.e. gain with the dark count of MPPC
- obtain charge from the low gain beam 2. where full waveform is recorded
- estimate the detected number of photoelectrons at LYSO by 3.

pedestal

311.5 ± 2.

1:001975 + 0:0000 65.44 ± 1

1 p.e.

 10^{2}

10

2 p.e.

0pe a

lightyield analysis result

- thickness : lightlield decreases in proportion to the thickness
- width : wider LYSO have smaller ratio of photo-insensitive area
- : longer LYSO is more susceptible to the attenuation of scintillation light • length LYSO of all size achieved the goal of $N_{p.e.} > 670$ Future $\mu \rightarrow e$ (Nepties > 168 for half thickness)

October 3, 2024

estimation of contribution from reference counter

time walk correction

1. look at the correlation between $t_{LE} - t_{ref}$ and TOT, and get the interpolation function

- 2. subtract interpolation function from the datapoint
- 3. obtain resolution from a σ of a gaussian fit of corrected time

October 3, 2024

optimization of the thresholds

thresholds to be optimized:

800

– mV]

- 1. leading edge threshold for each LYSO channel
- 2. TOT threshold for each LYSO channel
- 3. leading edge threshold for time reference counter

timing decision by multiple MPPC channels

remaining time walk effect

series connection had stronger time walk effect left even after the correction by TOT

October 3, 2024

Future $\mu \rightarrow e\gamma$ Meeting 25 $\Re t_{left} - t_{TC}$ and $t_{right} - t_{TC}$ will have a small correlation even if there is no walk effect, because of t_{TC}

time resolution analysis result – angular dependence –

LYSO achieved the goal resolution of 42 ps with all injection angle

comparison between material & thickness

efficiency in 3 mm thickness LYSO

pictures

ピクセルサイズ	小 ◀────► 大
増倍率	
検出効率	
ダイナミックレンジ	
高速応答 <mark>性</mark>	

JTC's Scintillation Product Information

Properties	Ce:FTRL	Ce:LYSO	YSO
Coincident Time Resolution(ps) 2mm cube	96	125	
LO (Ph/MeV)	30000±10%	36000±10%	27000
Decay Time (ns)	31	40	70
Energy Resolution	8-10%	8-10%	11%
Hygroscopic	No	Νο	Νο
Wavelength of Max Emission (nm)	420	420	420
Refractive Index	1.81	1.81	1.8
Density (g/cm3)	7.2	7.2	4.5

3 x 5 x 50 F&N (independent) position scan

3 x 5 x 50 F (series) position scan

resolution [ps]

resolution [ps]

1.5 x 5 x 50 (independent) position scan

3 x 5 x 100 (independent) position scan

UCTODER 3, 2024

Future $\mu \rightarrow e\gamma$ Meeting

3 x 10 x 50 (independent) position scan

analysis using TC

3x10x50F independent upLYSO upTC

3x10x50F independent downLYSO upTC

October 3, 2024

3 x 10 x 50 (series) position scan

0

-10

60

55**-**

50⊢

45F

40

35

30F

25F

20^E

55E

50

45F

40F

35F

30

25F

20^t

-30

-20

resolution [ps]

-30

-20

-10

0

resolution [ps]

1.5 x 5 x 50 angle scan

3 x 10 x 50 angle scan

October 3, 2024