EPFL

EDIPO 2 Staggered racetracks Mechanical 3D FEA

X. Sarasola

SWISS PLASMA CENTER October 17th, 2024

EPFL Cable design

- Bruker strand:
 - $j_{c,nc} = 2600 \text{ A/mm}^2 \text{ at } 12 \text{ T and } 4.2 \text{ K}$
 - Cu:nCu = 1.0
- Same cable used for all coils
 - First stage:

• Second stage: 24×(6+1), 0.7 mm

• Assumed insulation thickness: 0.2 mm

EPFL Magnet design

- 144×144 mm² aperture
- Two sets of flat racetrack coils:
 - 1. Side coils: one pair of coils, each made of 6 pancakes: 16 turns/pancake
 - 2. Vertical coils: one pair of coils, each made of 4 pancakes: 46 turns/pancake
- Iron parts in red: iron yoke limited to the straight section of the coils
- 50 mm wide spacers (only vertical coils)

EPFL Comparison 3D vs 2D

	3D	2D
l _{op} (85%×l _{ss})	17.359 kA	17.316 kA
B _{center} aperture	15.02 T	15.03 T
B _{coil}	15.05 T	15.07 T
E _{total}	20.6 MJ	11.4 MJ/m

Magnetic 3D model

ANSYS 2021 R1 Build 21.1 PLOT NO. NODAL SOLUTION STEP=1 SUB =1 TIME=1 /EXPANDED BSUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat SMN =.013936 SMX =16.5466 013936 8509 3.68786 .52483 7.36179 9.19876 1.0357 12.8727 14.7096 16.5466

ANSYS 2021 R1 Build 21.1 PLOT NO. 1 NODAL SOLUTION STEP=1 SUB =5 TIME=1 /EXPANDED BSUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat SMN =01 SMX =16.55 0 1.83 3.67 5.5 7.33 9.17 11 12.83 14.67 16.5 4

EDIPO, magnetic 3D model

EDIPO 2: MECHANICAL 3D FEA

X. Sarasola

5

Mechanical 3D FEA Stress in the ends of the vertical coils (use of a reinforcing strip)

EPFL Equivalent Von Mises stress in the coils (reference)

EPFL **Equivalent Von Mises stress in the coils (reference)**

Nominal field

Cool-down (4.2 K)

EPFL Equivalent Von Mises stress (use of a 2 mm inner strip)

3D FEA

EDIPO 2: MECHANICAL

EPFL

Vert. coils, nom. field

coils, nom. field

Side

NSY LOI	s d N	202	2	R1 1	.02
DDA IEP JB	L : =3 =6	SOL	U'I	'IO	N
EXP PTO SYS	ANI Z =0	DED) (A	VG)
FAC VRE	ET=	rap =1 /at	91	.CS	
	=(00	25	04	
	- (.71 001 002	6E 07	-0 1 8	3
	- 0	004 006 008	64	5296	
	.(79	3	

ANSYS 2022 R1.02 Build 22.1

BUITIC Z2.1 PLOT NO. 1 NODAL SOLUTION STEP=3 SUB =6 TIME=3 /EXPANDED EPTOZ (AVG)

SMN =-.001472

.001472

.635E-03 .217E-03

202E-03 .620E-03

.001038 .001456 .001875

SMX =.002293

RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.002237

Strain along z in the coils

Reference

ANSYS 2022 R1.02 Build 22.1 PLOT NO. 1 NODAL SOLUTION STEP=3 SUB =6 TIME=3 FAVENNEE PowerGraphics EFACET=1 AVRES=Mat DMX =.001891 SMN =-.001894 SMX =.014031 -.001894 -.125E-03 .001644 .003414 .005183 .006953 .008722 .012261

Nominal field

Sarasola

×

EDIPO 2: MECHANICAL 3D FEA

11

Mechanical 3D FEA Mech prop of the winding pack Sensitivity analysis

EPFL Young's modulus

- Impregnated two-stage flat cable:
 - Assumption for EDIPO2: E = 20 GPa
- Impregnated Rutherford cable:
 - Assumption for FCC dipoles (and EDIPO2 in the past): E = 25 GPa
 - D. Schoerling
 - Model: E = 20 GPa
 - S. I. Bermudez et al., "Performance of a MQXF Nb3Sn Quadrupole Magnet Under Different Stress Level,"doi: 10.1109/TASC.2022.3167369.
 - Measured: 32 to 37 GPa
 - O. Sacristan De Frutos et al., "Characterisation of the Mechanical Behaviour of Superconducting Cables Used in High Field Magnets From Room Temperature Down to 77K", https://doi.org/10.18429/JACoW-IPAC2017-WEPVA112, http://jacow.org/ipac2017/papers/wepva112.pdf, 2017.
 - Measured: 30 to 58 GPa
 - Vallone et. al., "A Review of the Mechanical Properties of Materials Used in Nb3Sn Magnets for Particle Accelerators," doi: 10.1109/TASC.2023.3248544.
 - Calculated:
 - D Arbelaez et al 2010 J. Phys.: Conf. Ser. 234 022002

	100 μm insulation		60 μm insulation			
E_s (GPa)	90	110	126	90	110	126
E_1 (GPa)	65.1	78.7	89.5	68.5	82.8	94.5
E_2 (GPa)	41.0	45.8	49.3	45.7	51.7	56.1
E_3 (GPa)	27.8	29.7	30.9	34.0	36.8	38.8
ν_{12}	0.34	0.34	0.34	0.34	0.34	0.34
ν_{23}	0.24	0.23	0.22	0.25	0.24	0.23
ν_{31}	0.14	0.12	0.11	0.16	0.14	0.13
μ_{12} (GPa)	19.4	22.0	23.8	20.5	23.5	25.7
μ_{23} (GPa)	13.7	14.9	15.6	15.2	16.8	17.8
μ_{31} (GPa)	14.8	16.1	17.0	16.8	18.8	20.2

EPFL Strain along z in the coils

Sarasola

×

EPFL Equivalent Von Mises stress in the coils

FEA

B

EDIPO 2: MECHANICAL

EPFL Homogeneized mechanical properties. Model

- Same material cross-sections:
 - Superconductor
 - Void fraction (~20%)
 - Insulation thickness: 0.2 mm
- Bonded contacts everywhere
- Assumed material properties at 4.2 K:

	E (GPa)	v (-)	α 10 ⁻⁶ /Κ
Nb ₃ Sn	125	0.37	7
Cu	118	0.36	17
Epoxy resin	2.4	0.4	50
G10	E1=12 GPa E2=20 GPa E3=20 GPa	v12=0.33 v23=0.17 v13=0.33	α1=24.7 α2=6.9 α3=6.9

EPFL Homogeneized mechanical properties. Model

Results:

Prop	Value	Unit
E _x	52.7	GPa
Ey	50.6	GPa
Ez	86.5	GPa
ν _{xy}	0.22	-
v _{yz}	0.22	-
ν_{xz}	0.22	-
αχ	19.2	10 ⁻⁶ /K
α _y	20.8	10 ⁻⁶ /K
αz	18.9	10 ⁻⁶ /K

17

Magnetic 3D FEA Use of end spacers

EPFL Use of end spacers

Two end spacers in vertical coils (Ref)

Field in the aperture

EDIPO 2: MECHANICAL 3D FEA

- B field plotted along 4 paths:
 - Path 1 along x axis of the aperture
 - Path 2 along y axis of the aperture
 - Path 3 around a circumference of R=40 mm
 - Path 4 along z axis (longitudinal axis of the aperture)

19

EDIPO, magnetic 3D model

Field along paths 1 and 2

- The field uniformity along the x and y axes is identical in all cases
- In the cases with end spacers we lose ~0.02 T in the center of the aperture

Field along paths 3 and 4

- The uniform field length along the longitudinal axis of the aperture (z axis) is not affected for z < ±0.5 m
- Almost identical profiles if one or two spacers are used

EPFL B field in the coils

- In both cases, the peak field is in the straight section of the side coils:
 - One end spacer in the vertical coils: B_{max} = 15.03 T, B_{bore} = 15.005 T
 - Two end spacers in the vertical coils: $B_{max} = 15.05 \text{ T}$, $B_{bore} = 15.02 \text{ T}$

X. Sarasola

EPFL B field in the vertical coils

- In the vertical coils, the presence of a second spacer shifts the peak field to the straight section:
 - One end spacer in the vertical coils: $B_{max,vert} = 14.56 T$
 - Two end spacers in the vertical coils: $B_{max,vert} = 14.44 \text{ T}$

Sarasola

B field in the vertical coils: straight section vs ends

ANSYS 2021 R1 Build 21.1 One end spacer, vertical coil, straight PLOT NO. NODAL SOLUTION SUB =1 TIME= BSUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat SMN =.68483 =14.4416.79872 3.32719 9.85566 11.3841 12.9126 14.4411

EDIPO, magnetic 3D model

One end spacer, vertical coil, ends

ANSYS 2021 R1 Build 21.1
PLOT NO. 1
NODAL SOLUTION
SUB = 1
TIME=1
/EXPANDED
RSYS=0
PowerGraphics
EFACET=1 AVRES=Mat
SMN =.524915
SMX =14.5652
2.08494
3.64497
5.205
8.32506
9.88509
11.4451
14.5652

EDIPO, magnetic 3D model

EPFL **B** field in the side coils

- In the side coils, the situation remains largely unchanged whether end spacers are used in the vertical coils or not:
 - One end spacer in the vertical coils: $B_{max,side} = 15.03 \text{ T}, B_{bore} = 15.005 \text{ T}$
 - With end spacers in the vertical coils: B_{max.side} = 15.05 T, B_{bore} = 15.02 T

*End spacers only in the vertical coils

EDIPO, magnetic 3D model

EPFL B field in the side coils: straight section vs ends

EDIPO, magnetic 3D model

One end spacer*, side coil, ends

Duild 21 1	<1
PLOT NO. 1	1
NODAL SOLUTI	ION
STEP=1	
SUB_=1	
TIME=1	
DOLM (M	7(1)
BSYS=0	/G)
PowerGraphic	CS
EFACET=1	
AVRES=Mat	
SMN =.04826	-
SMX =14.2490	2
1 6261	7
3,20409	à
4.782	
6.35992	2
7.93783	3
9.515/5	2
12 6716	5
14,249	5

26

Sarasola

×

EDIPO, magnetic 3D model

*End spacers only in the vertical coils