Stout smearing and Wilson flow in lattice perturbation theory (and beyond)

Stephan Dürr

University of Wuppertal Jülich Supercomputing Center

work with my former PhD student Max Ammer

Zürich Gradient Flow Workshop 2025 – 13 Feb 2025

Outline

- why stout smearing and gradient flow are closely related
- [1] M. Ammer and S. Dürr, Phys.Rev.D 109, 014512 (2024) [2302.11261] *Calculation of* c_{SW} *at one-loop order for Brillouin fermions*
- [2] M. Ammer and S. Dürr, Phys.Rev.D 110, 054504 (2024) [2406.03493] Stout smearing and Wilson flow in lattice perturbation theory
- [3] M. Ammer and S. Dürr, forthcoming One-loop c_{SW} in lattice perturbation theory for Wilson and Brillouin fermions with stout smearing or gradient flow
- application to stag./KW/BC eigenvalues (with Stefano Capitani) [2411.18237]
- application to topological susceptibility (with Gianluca Fuwa) [2501.08217]

Recap of stout smearing

$$\begin{split} U_{\mu}(x) &= V_{\mu}^{(0)}(x) \quad \text{original ("thin link") gauge field } [\forall \mu, \forall x] \\ V_{\mu}(x) &= V_{\mu}^{(n)}(x) \quad \text{smeared ("fat link") gauge field [after n steps of smoothing]} \\ V_{\mu}^{(0)}(x) &\longrightarrow V_{\mu}^{(1)}(x) \longrightarrow V_{\mu}^{(2)}(x) \longrightarrow \dots \longrightarrow V_{\mu}^{(n)}(x) \end{split}$$

Problem: APE smearing gives $V_{\mu}(x) \notin SU(N_c)$, thus "needs backprojection" Solution: stout smearing gives $V_{\mu}(x) \in SU(N_c)$, obey $0 \le \rho \le 0.125$ [hep-lat/0311018]

$$V_{\mu}^{(n)}(x) = e^{i\rho Q_{\mu}^{(n-1)}(x)} V_{\mu}^{(n-1)}(x)$$

$$Q_{\mu}^{(n-1)}(x) = P_{\text{TH}} \left[\frac{1}{i} S_{\mu}^{(n-1)}(x) V^{(n-1)\dagger}(x) \right] \qquad \text{[in Lie algebra]}$$

$$S^{(k)}_{\mu}(x) = \sum_{\nu \neq \mu} \left\{ V^{(k)}_{\nu}(x) V^{(k)}_{\mu}(x+\hat{\nu}) V^{(k)\dagger}_{\nu}(x+\hat{\mu}) + V^{(k)\dagger}_{\nu}(x-\hat{\nu}) V^{(k)}_{\mu}(x-\hat{\nu}) V^{(k)}_{\nu}(x+\hat{\mu}-\hat{\nu}) \right\}$$

Recap of gradient flow

• 1st order integrator [Morningstar Peardon, hep-lat/0311018]

$$X_0 = V_t, \text{ build } Q_0 \text{ from } X_0$$
$$V_{t+\rho a^2} = \exp(i\rho Q_0) X_0$$

• 2nd order integrator [midpoint rule]

$$\begin{aligned} X_0 &= V_t, & \text{build } Q_0 \text{ from } X_0 \\ X_1 &= \exp(i\frac{\rho}{2}Q_0)X_0, & \text{build } Q_1 \text{ from } X_1 \\ V_{t+\rho a^2} &= \exp(i\rho Q_1 - i\frac{\rho}{2}Q_0)X_1 & \text{or} & \exp(i\rho Q_1)X_0 \end{aligned}$$

• 3rd order integrator [Lüscher, arXiv:1006.4518]

$$\begin{split} X_0 &= V_t, & \text{build } Q_0 \text{ from } X_0 \\ X_1 &= \exp(i\frac{\rho}{4}Q_0)X_0, & \text{build } Q_1 \text{ from } X_1 \\ X_2 &= \exp(i\frac{8\rho}{9}Q_1 - i\frac{17\rho}{36}Q_0)X_1, & \text{build } Q_2 \text{ from } X_2 \\ V_{t+\rho a^2} &= \exp(i\frac{3}{4}\rho Q_2 - i\frac{8}{9}\rho Q_1 + i\frac{17}{36}\rho Q_0)X_2 \end{split}$$

• Szabolcs Borsanyi: Methods of ... (Bad Honnef School 2023)

Numerical flow integration

- 4 日 > 4 昼 > 4 星 > - 星 - 夕へぐ

Continuum strategies with gradient flow

Flow time in lattice units defined through limit $n \to \infty, \rho \to 0$ with $n\rho = \text{fixed}$

 $t/a^2 \simeq n_{
m stout} \,
ho_{
m stout} \simeq {
m cumulative sum of used }
ho$

whereupon t has dimension [area]=[length²]=[mass⁻²], while $\rho_{\text{stout}} \in \mathbb{R}$.

Two options for "keeping flow time fixed" in continuum limit: (1) keep t/a^2 ["flow-time in lattice units"] fixed as $a \to 0$ (2) keep t ["flow-time in physical units"] fixed as $a \to 0$

(1) CPU demand (number of calls to stout routine) stays *constant* under $a \to 0$ (2) CPU demand *proliferates* [scilicet $\propto a^{-2}$] at fixed $\rho \simeq 0.01$ under $a \to 0$

(1) diffusion radius $\sqrt{8t} \propto a$ goes to zero as $a \rightarrow 0$; "ultralocal modification" (2) diffusion radius $\sqrt{8t} \propto r_0$ defines physical distance as $a \rightarrow 0$; "new regulator"

Strategy (2) opens option for defining new regularization and renormalization schemes ("flow schemes") for quantities like $\alpha_{\rm st}^{\rm GF}(1/\sqrt{8t})$ or $m_q^{\rm GF}(1/\sqrt{8t})$ or ... [Lüscher]

Lattice perturbation theory

- ullet calculate quantities in Symanzik improvement program, e.g. $m_{
 m crit}$ and $c_{
 m SW}$
- matching to continuum schemes, e.g. $m_q^{\text{stag, Sym, stout},...}(a^{-1}) \rightarrow m_q^{\text{RGI}}$ or $m_q^{\overline{\text{MS}}}(\mu)$

Lüscher et al. "Nonperturbative O(a) improvement of lattice QCD" [hep-lat/9609035]

Lattice gluon propagator

• Relate link variables $U_{\mu}(x) \in SU(N_c)$ to gluon fields $A_{\mu}(x) \in su(N_c)$ (hermitean)

 $U_{\mu}(x) = \exp(\mathrm{i}g_0 A_{\mu}(x))$ with $A_{\mu}(x) = \sum_{a=1}^{N_c^2 - 1} A_{\mu}^a(x) T^a$

• Apply to desired actions and expand to requested order in g_0 to get Feynman rules. Two gluon actions (plaquette, Symanzik) and two fermion actions (Wilson, Brillouin).

- Gauge-fixing and Fadeev-Popov similar to continuum (work in covariant gauge).
- Haar measure $DU = e^{-S_{\text{meas}}}DA$ from DA on $su(N_c)$ with known S_{meas} .
- All together perturbation theory for Yang-Mills theory from $S_{glue} + S_{meas} + S_{gf} + S_{gh}$

Figure 4.1: Gauge vertices for one-loop lattice perturbation theory.

Lattice fermions: Naive/Wilson/Brillouin

• Naive fermions

$$D_{\text{nai}}(x,y) = \sum_{\mu} \gamma_{\mu} \nabla_{\mu} (x,y) + m \delta_{x,y}$$
$$D_{\text{nai}}(p) = \text{i} \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin(ap_{\mu}) + m$$
$$= \text{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu} + m \quad \text{with} \quad \bar{p}_{\mu} \equiv \frac{1}{a} \sin(ap_{\mu})$$

• Wilson fermions

$$\begin{split} D_{\rm W}(x,y) &= \sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x,y) - \frac{ra}{2} \sum_{\mu} \triangle_{\mu}(x,y) + m \delta_{x,y} \\ D_{\rm W}(p) &= {\rm i} \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin(ap_{\mu}) + \frac{r}{a} \sum_{\mu} \left\{ 1 - \cos(ap_{\mu}) \right\} + m \\ &= {\rm i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu} + \frac{ra}{2} \sum_{\mu} \hat{p}_{\mu}^{2} + m \quad \text{with} \quad \hat{p}_{\mu} \equiv \frac{2}{a} \sin(\frac{ap_{\mu}}{2}) \end{split}$$

Zürich Gradient Flow Workshop 2025

• Brillouin fermions

$$D_{B}(x,y) = -\frac{\lambda_{0}}{2}r\delta(x,y) + \sum_{\mu=\pm 1}^{\pm 4} \left(\rho_{1}\gamma_{\mu} - \frac{\lambda_{1}}{2}r\right)W_{\mu}(x)\delta(x+\hat{\mu},y) + \sum_{\mu,\nu=\pm 1}^{\pm 4} \left(\rho_{2}\gamma_{\mu} - \frac{\lambda_{2}}{4}r\right)W_{\mu\nu}(x)\delta(x+\hat{\mu}+\hat{\nu},y) + \sum_{\mu,\nu,\rho=\pm 1}^{\pm 4} \left(\frac{\rho_{3}}{2}\gamma_{\mu} - \frac{\lambda_{3}}{12}r\right)W_{\mu\nu\rho}(x)\delta(x+\hat{\mu}+\hat{\nu}+\hat{\rho},y) + \sum_{\mu,\nu,\rho,\sigma=\pm 1}^{\pm 4} \left(\frac{\rho_{4}}{6}\gamma_{\mu} - \frac{\lambda_{4}}{48}r\right)W_{\mu\nu\rho\sigma}(x)\delta(x+\hat{\mu}+\hat{\nu}+\hat{\rho}+\hat{\sigma},y)$$

with $|\mu| \neq |\nu|$ and $|\mu|, |\nu|, |\rho|$ pairwise unequal and $|\mu|, |\nu|, |\rho|, |\sigma|$ pairwise unequal. $W_{\mu}(x)$ is smoothed link in μ -dir, $W_{\mu\nu}(x)$ in $\mu\nu$ -dir, ..., $W_{\mu\nu\rho\sigma}(x)$ in $\mu\nu\rho\sigma$ -dir. $(\rho_1, \rho_2, \rho_3, \rho_4) = \frac{1}{432}(64, 16, 4, 1)$ and $(\lambda_0, ..., \lambda_4) = \frac{1}{64}(-240, 8, 4, 2, 1)$ gives Brillouin. $(\rho_1, \rho_2, \rho_3, \rho_4) = \frac{1}{2}(1, 0, 0, 0)$ and $(\lambda_0, ..., \lambda_4) = (-8, 1, 0, 0, 0)$ reproduces Wilson.

Propagators: Wilson/Brillouin

Compact notation for Wilson/Brillouin fermion propagator:

$$S_{\rm W} = \frac{-i\sum_{\mu}\gamma_{\mu}\sin(ak_{\mu}) + 2r\sum_{\nu}\sin^{2}(\frac{a}{2}k_{\nu})}{\sum_{\mu}\sin^{2}(ak_{\mu}) + 4r^{2}[\sum_{\nu}\sin^{2}(\frac{a}{2}k_{\nu})]^{2}} = \frac{-i\sum_{\mu}\gamma_{\mu}\bar{s}(k_{\mu}) + 2rs^{2}}{\bar{s}^{2} + [2rs^{2}]^{2}}$$
$$S_{\rm B} = \frac{-\frac{i}{27}\sum_{\mu}\{\gamma_{\mu}\bar{s}_{\mu}(k_{\mu})\prod_{\nu\neq\mu}(\bar{c}(k_{\nu}) + 2)\} + 2r[1 - c^{2}(k_{1})c^{2}(k_{2})c^{2}(k_{3})c^{2}(k_{4})]}{\frac{1}{729}\sum_{\mu}\{\bar{s}^{2}(k_{\mu})\prod_{\nu\neq\mu}(\bar{c}(k_{\nu}) + 2)^{2}\} + 4r^{2}[1 - c^{2}(k_{1})c^{2}(k_{2})c^{2}(k_{3})c^{2}(k_{4})]^{2}}$$

Standard abbreviations for trigonomentric functions (at a = 1):

$$s_{\mu} = \sin(\frac{1}{2}k_{\mu}) , c_{\mu} = \cos(\frac{1}{2}k_{\mu}) , s^{2} = \sum_{\mu} s(k_{\mu})^{2}$$
$$\bar{s}_{\mu} = \sin(k_{\mu}) , \bar{c}_{\mu} = \cos(k_{\mu}) , \bar{s}^{2} = \sum_{\mu} \bar{s}(k_{\mu})^{2}$$

In addition clover improvement term (implicit fundamental color index summed over):

$$-\frac{c_{\rm SW}}{2} \sum_{x} \sum_{\mu < \nu} \bar{\psi}(x) \sigma_{\mu\nu} F_{\mu\nu}(x) \psi(x)$$

Vertices: Wilson/Brillouin/Clover

Figure 4.2: Momentum assignments for the vertices with one, two and three gluons.

Vertices for Wilson fermion:

$$V_{1W_{\mu}^{a}}(p,q) = -g_{0}T^{a}[i\gamma_{\mu}c(p_{\mu}+q_{\mu})+rs(p_{\mu}+q_{\mu})]$$

$$V_{2W_{\mu\nu}^{ab}}(p,q) = \frac{1}{2}g_{0}^{2}T^{a}T^{b}\delta_{\mu\nu}[i\gamma_{\mu}s(p_{\mu}+q_{\mu})-rc(p_{\mu}+q_{\mu})]$$

$$V_{3W_{\mu\nu\rho}^{abc}}(p,q) = \frac{1}{6}g_{0}^{3}T^{a}T^{b}T^{c}\delta_{\mu\nu}\delta_{\mu\rho}[i\gamma_{\mu}c(p_{\mu}+q_{\mu})+rs(p_{\mu}+q_{\mu})]$$

Vertices for Brillouin fermion are significantly longer [arXiv:2302.11261]. Vertices for Clover term:

$$V_{1C_{\mu}^{a}}(p,q) = ig_{0}T^{a}c_{SW}\sum_{\nu}\sigma_{\mu\nu}c(p_{\mu}-q_{\mu})\bar{s}(p_{\nu}-q_{\nu})/2$$
$$V_{2C_{\mu\nu}^{ab}}(p,q) = g_{0}^{2}T^{a}T^{b}c_{SW}...$$
$$V_{3C_{\mu\nu}^{abc}}(p,q) = ig_{0}^{3}T^{a}T^{b}T^{c}c_{SW}...$$

S. Dürr, BUW/JSC

Zürich Gradient Flow Workshop 2025

Self-energy: Wilson/Brillouin

• Tadpole and sunset diagrams

Figure 4.3: Tadpole (left) and sunset (right) diagrams of the quark self energy.

• Expand to order 1/a

• Evaluate tadpole and sunset integrals (Feynman gauge, i.e. $\xi = 1$)

$$g_0^2 C_F \Sigma_0^{(\text{tadpole})} = \int_{-\pi}^{\pi} \frac{\mathrm{d}^4 k}{(2\pi)^4} \sum_{\mu,\nu,a} \left[G_{\mu\nu}(k) V_{2\mu\nu}^{aa}(p,p,k,-k) \right]_{p=0}$$
$$g_0^2 C_F \Sigma_0^{(\text{sunset})} = \int_{-\pi}^{\pi} \frac{\mathrm{d}^4 k}{(2\pi)^4} \sum_{\mu,\nu,a} \left[V_{1\mu}^a(p,k) G_{\mu\nu}(p-k) S(k) V_{1\nu}^a(k,p) \right]_{p=0}$$

• Result for self-energy of Wilson/Brillouin fermion on plaq/Sym glue

Figure 5.1: Self energy Σ_0 of Wilson and Brillouin fermions as a function of r.

 \rightarrow additive mass shift significantly reduced by Symanzik glue (instead of plaquette) \rightarrow additive mass shift minimally reduced by Brillouin fermion (instead of Wilson)

$c_{\rm SW}$ at tree level: Wilson/Brillouin fermion

- Perturbative expansion is $c_{SW} = c_{SW}^{(0)} + g_0^2 c_{SW}^{(1)} + O(g_0^4)$
- At tree level only qqg vertex appears

$$\Lambda^{(0)}{}^{a}_{\mu} = V_{1\mu}{}^{a}(p,p) = -g_{0}T^{a} \left\{ i\gamma_{\mu} \left[2\rho_{1} + 12\rho_{2} + 24\rho_{3} + 16\rho_{4} \right] \right. \\ \left. + a \left[\frac{r}{2} (p_{\mu} + q_{\mu})(\lambda_{1} + 6\lambda_{2} + 12\lambda_{3} + 8\lambda_{4}) + \frac{i}{2} c_{SW}^{(0)} \sum_{\nu} \sigma_{\mu\nu} (p_{\nu} - q_{\nu}) \right] + O(a^{2}) \right\}$$

• On-shell condition is

$$\bar{u}(q)\Lambda^{(0)}{}^{a}_{\mu}u(p) = -g_{0}T^{a}\bar{u}(q)\left\{i\gamma_{\mu}\left[2\rho_{1}+12\rho_{2}+24\rho_{3}+16\rho_{4}\right]\right.$$
$$\left.+\frac{a}{2}\left[r(\lambda_{1}+6\lambda_{2}+12\lambda_{3}+8\lambda_{4})-c^{(0)}_{\rm SW}\right](p_{\nu}+q_{\nu})+O(a^{2})\right\}u(p)$$

• Since both $2\rho_1 + 12\rho_2 + 24\rho_3 + 16\rho_4 = 1$ and $\lambda_1 + 6\lambda_2 + 12\lambda_3 + 8\lambda_4 = 1$ necessary for legal action [satisfied by W/B], improvement condition is $c_{SW}^{(0)} = r$ for W/B.

$c_{\rm SW}$ at one-loop level: Wilson/Brillouin fermion

• One-loop vertex function

$$g_0^3 \Lambda^{(1)}{}^a_{\mu} = -g_0^3 T^a \Big[\gamma_{\mu} F_1 + a \not q \gamma_{\mu} F_2 + a \gamma_{\mu} \not p F_3 + a (p_{\mu} + q_{\mu}) G_1 + a (p_{\mu} - q_{\mu}) H_1 \Big]$$

• On shell $[F_2, F_3$ not contributing, $H_1 = 0$ due to symmetry, Aoki Kuramashi 2003]

$$g_0^3 \bar{u}(q) \left[i\gamma_\mu F_1 + \frac{a}{2} (p_\mu + q_\mu) (c_{\rm SW}^{(1)} - 2G_1) T^a \right] u(p)$$

• Improvement condition is $c_{SW}^{(1)} = 2G_1$ with G_1 from $\Lambda^{(1)}{}^a_{\mu}$ via 6 diagrams:

Figure 4.4: The six one-loop diagrams contributing to the vertex function.

Figure 5.2: The one-loop values of $c_{SW}^{(1)}$ for Wilson and Brillouin fermions with $N_c = 3$ as a function of r.

Brillouin fermion brings major reductionSymanzik glue brings minor reduction

- Divergence structure Wilson results agree with Aoki Kuramashi 2003
- sum of all diagrams is finite
- individually only (d) is finite, other five are IR-divergent
- regulate (a,b,c,e,f) by subtracting log. div. lattice integral with appropriate prefactor

$$\mathcal{B}_2 = \int_{-\pi}^{\pi} \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{1}{(\hat{k}^2)^2} \qquad \text{gives} \qquad \mathcal{B}_2(\mu) = \frac{1}{16\pi^2} \Big[-\ln(\mu^2) + F_0 - \gamma_\mathrm{E} \Big] + O(\mu^2)$$

diag.	$\propto \mathcal{B}_2$	Wilson/plaq	Brillouin/plaq	Wilson/Sym	Brillouin/Sym
(a)	-1/3	0.009852153(1)	0.0100402212(1)	0.01048401(1)	0.0108335(1)
(b)	-9/2	0.125895883(1)	0.098371668(1)	0.1285594(1)	0.102829(1)
(c)	+9/2	-0.124125079(1)	-0.100558858(1)	-0.1337781(1)	-0.1098254(1)
(d)	0	0.297394534(1)	0.142461144(1)	0.2354388(1)	0.1120815(1)
(e)	+1/6	-0.020214623(1)	-0.013344189(1)	-0.022229808(1)	-0.013659(1)
(f)	+1/6	-0.020214623(1)	-0.013344189(1)	-0.022229808(1)	-0.013659(1)
sum	0	0.26858825(1)	0.12362580(1)	0.1962445(1)	0.088601(1)

More details (dependence on r, N_c , ...) in [arXiv:2302.11261] Stout-smearing and gradient-flow details in [arXiv:2406.03493] Combination to appear (hopefully) soon [arXiv:25??.???]

Schwinger Model: topological charge distribution

Taste splittings: $a\delta_{stag}$ under gradient flow

Eigenvalues $\pm i\lambda_1, ..., \pm i\lambda_{15}$ of D_{stag} on a |q|=1 configuration at $(\beta, L/a) = (7.2, 24)$ versus gradient flow time τ (everything in lattice units). Note that λ_1 pairs with $-\lambda_1$ for |q| = 1, while $\lambda_2 \simeq \lambda_3$ and $\lambda_4 \simeq \lambda_5$ pair, and so on. Splittings defined with proper pairing: $\delta_1 = 2\lambda_1$, $\delta_2 = \lambda_3 - \lambda_2$ and so on for |q| = 1.

 \rightarrow for $D_{
m stag}$ splittings decrease exponentially with the gradient flow time

Topological susceptibility in SU(3) theory in 4D

Gluonic definition of the field-strength tensor $F_{\mu\nu}(x) = F_{\mu\nu}(x)^a T^a$ with $T^a = \lambda^a/2$ via clover-plaquette. Based on this *local* topological charge density is

$$q_{\text{nai}}(x) = \frac{1}{4\pi^2} \text{Tr}[F_{12}(x)F_{34}(x) - F_{13}(x)F_{24}(x) + F_{14}(x)F_{23}(x)]$$

In this case the topological susceptibility [with $V = Na^4$ the physical box volume]

$$\chi_{ ext{top}} = Z_q^2(eta)\chi_{ ext{nai}} + M(eta) \qquad \text{with} \qquad \chi_{ ext{nai}} = rac{a^4}{N} \sum_{x,y \in \Lambda} q_{ ext{nai}}(x)q_{ ext{nai}}(y)$$

renormalizes multiplicatively and additively [Campostrini, DiGiacomo, Alles,...]. Still

$$q_{\text{ren}} = \text{round}(Z_q(\beta)q_{\text{nai}})$$
 with $q_{\text{nai}} = a^4 \sum_{x \in \Lambda} q_{\text{nai}}(x)$

is a gluonic definition of the *global* topological charge distribution P_q which renormalizes only multiplicatively [CP symmetry]. Based on it one may define

$$\chi_{\rm top} = \langle q_{\rm ren}^2 \rangle / V$$

and higher moments without further renormalization $[P_q$ is fully renormalized quantity].

Fixed t/a^2 versus fixed t in fixed $V = (2.4783 r_0)^4$

L/a	eta	r_0/a	$a[{ m fm}]$	7 stout	flow 0.21 fm	flow 0.30 fm
12	5.9421	4.8420	0.101	7 imes 0.12	$9 \times 0.06 = 0.54$	$9 \times 0.12 = 1.08$
14	6.0314	5.6490	0.087	7 imes 0.12	$12 \times 0.06125 = 0.735$	$12 \times 0.1225 = 1.47$
16	6.1142	6.4560	0.076	7 imes 0.12	$16 \times 0.06 = 0.96$	$16 \times 0.12 = 1.92$
18	6.1912	7.2630	0.067	7 imes 0.12	$20 \times 0.06075 = 1.215$	$20 \times 0.1215 = 2.43$
20	6.2629	8.0700	0.061	7 imes 0.12	$25 \times 0.06 = 1.5$	$25 \times 0.12 = 3.00$
24	6.3929	9.6841	0.051	7 imes 0.12	$36 \times 0.06 = 2.16$	$36 \times 0.12 = 4.32$
28	6.5079	11.298	0.043	7 imes 0.12	$49 \times 0.06 = 2.94$	$49 \times 0.12 = 5.88$

"7 stout" keeps flow time in lattice units at $t/a^2 = 0.84$ to give $\sqrt{8t} = \sqrt{6.72} a \rightarrow 0$. "flow 0.21 fm" sets flow time to $t/a^2 = (N/4)^2 0.06$ to give $\sqrt{8t} = 0.429 r_0 \simeq 0.21$ fm. "flow 0.30 fm" sets flow time to $t/a^2 = (N/4)^2 0.12$ to give $\sqrt{8t} = 0.607 r_0 \simeq 0.30$ fm.

Impact of smoothing strategy on Z_q

 Z_q factors involved, with quadratic fits in $(a/r_0)^2$ (left) and rational fits in g_0^2 (right). All smoothing strategies yield consistent values; final result (extrapolations next slide)

$$\chi_{\rm top}^{1/4} = \frac{0.4769(18)}{0.4757(64)\,\rm{fm}} = 197.8(0.7)(2.7)\,\rm{MeV}$$

with $18^2 = \text{stat}^2 + \text{syst}^2$ and r_0 from [Asmussen:2024hfw]. For details: 2501.08217

S. Dürr, BUW/JSC

Continuum extrapolation of $\chi_{ m top} r_0^4$

	$\chi_{ m top}r_0^4$	$\chi^{1/4}_{ m top}r_0$	combined
7 stout	$0.05194(68)(149) = [0.4774(16)(34)]^4$	0.4780(14)(37)	0.4776(15)(35)(01)
flow 0.21 fm	$0.05105(64)(342) = [0.4753(15)(80)]^4$	0.4761(14)(77)	0.4759(15)(79)(01)
flow 0.30 fm	$0.05159(64)(030) = [0.4766(15)(07)]^4$	0.4773(13)(13)	0.4769(14)(10)(03)

Continuum extrapolation of $\chi_{top}^{1/4} r_0$

	$\chi_{ m top} r_0^4$	$\chi^{1/4}_{ m top}r_0$	combined
7 stout	$0.05194(68)(149) = [0.4774(16)(34)]^4$	0.4780(14)(37)	0.4776(15)(35)(01)
flow 0.21 fm	$0.05105(64)(342) = [0.4753(15)(80)]^4$	0.4761(14)(77)	0.4759(15)(79)(01)
flow 0.30 fm	$0.05159(64)(030) = [0.4766(15)(07)]^4$	0.4773(13)(13)	0.4769(14)(10)(03)

Summary

- stout smearing is ingenious tool to smoothen gauge field, keeping links unitary
- gradient flow is defined by using stout as 1st-order integrator to flow time $t/a^2 = n\rho$
- two legitimate strategies for keeping flow time fixed in continuum limit:
 (1) keep t/a² ["flow-time in lattice units"] fixed as a → 0
 (2) keep t ["flow-time in physical units"] fixed as a → 0
- two different physical situations:
 (1) diffusion radius √8t ∝ a goes to zero as a → 0; "ultralocal modification"
 (2) diffusion radius √8t ∝ r₀ defines physical distance as a → 0; "new regulator"
- lattice perturbation theory expands $U_{\mu}(x) = \exp(\mathrm{i}g_0 A_{\mu}(x))$ in powers of g_0
- examples were Σ_0 and $c_{\rm SW}$ for Wilson/Brillouin fermions (soon with stout/flow)
- gradient flow exhibits staggered eigenvalue pairs/quartets (invisible at $t/a^2 = 0$)
- "7 stout" and "flow 0.21 fm" and "flow 0.30 fm" give consistent results for $\chi_{
 m top}r_0^4$

Schwinger Model: QED in 2D with any N_f

SM at $N_f = 0$ simulated with Metropolis/overrelax/instanton-hit/parity-hit. Topological charge autocorrelation time is O(1) at any β [arXiv:1203.2560].

Operators use n=0, 1, 3 steps of $\rho=0.25$ stout-smearing [Morningstar Peardon 2003]. Flowtime $\tau/a^2 = 0.75$ reached by $(n, \rho) = (3, 0.25)$ or (5, 0.15) or (15, 0.05) or ...

Taste splittings: $a\delta_{\rm KW}$ under gradient flow

Eigenvalues $\pm i\lambda_1, ..., \pm i\lambda_{15}$ of D_{KW} on a |q|=1 configuration at $(\beta, L/a) = (7.2, 24)$ versus gradient flow time τ (everything in lattice units). Note that λ_1 pairs with $-\lambda_1$ for |q|=1, while $\lambda_2 \simeq \lambda_3$ and $\lambda_4 \simeq \lambda_5$ pair, and so on. Splittings defined with proper pairing: $\delta_1 = 2\lambda_1$, $\delta_2 = \lambda_3 - \lambda_2$ and so on for |q|=1.

 \rightarrow for $D_{\rm KW}$ some splittings stop decreasing after some gradient flow time

Taste splittings: $a\delta_{\rm BC}$ under gradient flow

Eigenvalues $\pm i\lambda_1, ..., \pm i\lambda_{15}$ of D_{BC} on a |q|=1 configuration at $(\beta, L/a) = (7.2, 24)$ versus gradient flow time τ (everything in lattice units). Note that λ_1 pairs with $-\lambda_1$ for |q|=1, while $\lambda_2 \simeq \lambda_3$ and $\lambda_4 \simeq \lambda_5$ pair, and so on. Splittings defined with proper pairing: $\delta_1 = 2\lambda_1$, $\delta_2 = \lambda_3 - \lambda_2$ and so on for |q|=1.

 \rightarrow for $D_{
m BC}$ decrease of splittings with gradient flow time seems more chaotic