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My charge:
“short-flow-time expansion and its applications”

First thought: I’ll just quickly list and review all its applications
- Energy density
- Quark bilinears
- Energy-momentum tensor
- Hadron vacuum polarisation
- Electroweak Hamiltonian
- EFTs for the Standard Model
- Quark masses
- Four-quark operators for flavour physics
- Nonlocal operators for parton distribution functions
- Local operators for moments of parton distribution functions
- …

Overview

See talks by:
R Harlander
J Borgulat
H Takaura
R Mason

A Shindler
…

And those are just the ones 
from yesterday…
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My charge:
“short-flow-time expansion and its applications”

First thought: I’ll just quickly list and review all its applications

Second thought: I’m radically underqualified to discuss this topic in this setting

“Some thoughts on the short-flow-time expansion and one application”

Overview
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My charge:
“short-flow-time expansion and its applications”

First thought: I’ll just quickly list and review all its applications

Second thought: I’m radically underqualified to discuss this topic in this setting

“Some thoughts on the short-flow-time expansion and one application”

Third thought: proceed assuming I do not need to introduce the gradient flow

Overview

Narayanan & Neuberger, JHEP 03 (2006) 064
Luscher, CMP 293 (2010) 899
Luscher, JHEP 08 (2010) 071

Luscher & Weisz, JHEP (2011) 051
Luscher, JHEP 04 (2013) 123

https://arxiv.org/abs/hep-th/0601210
https://arxiv.org/abs/0907.5491
https://arxiv.org/abs/1006.4518
https://arxiv.org/abs/1101.0963
https://arxiv.org/abs/1302.5246
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Outline

Operator product expansions and the short flow-time expansion

An application of the short flow-time expansion

Systematic and quantitative error estimates

Preliminary report on ongoing work by Alex Sturzu at 
William & Mary as part of the HadStruc Collaboration 
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Outline

Operator product expansions and the short flow-time expansion

An application of the short flow-time expansion

Systematic and quantitative error estimates



Operator product expansions
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Expansion proposed by Wilson

where the sum runs over local renormalised composite operators, ordered by dimension, 
and subject to relevant symmetries (independent of spontaneous symmetry breaking)

Defines renormalised composite operators without involving any regularisation

Enables one to draw conclusions about behaviour of    o in the limit
for which the composite operator is singular

Collins, Renormalization (1984) CUP
Weinberg, The Quantum Theory of Fields Vol. II (1995) CUP

Wilson PR 179 (1969) 1499



Wilson coefficients
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In the operator product expansion

Coefficient functions are
- Singular functions in the limit    that behave, up to logarithms, as

- Independent of external states and momenta
- Essential for determination of Wilson coefficients

- In asymptotically free theories, calculable in perturbation theory
- Hard scale provided by operator separation

- Obey renormalisation group equations



Some technical comments
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The validity of this expansion is nontrivial
- limit is nontrivial in Minkowski spacetime
- corresponding limit in momentum space nontrivial but physically interesting

Radius of convergence 
- Conformal field theories: at least as large as largest circle that excludes other 

operator insertions
- Converges in φ4 theories
- QCD: unclear if any exists! 

Proof of existence to all orders in perturbation theory by Zimmerman

Holland et al., CMP 342 (2016) 385

For example        with     finite is high-energy scattering

https://arxiv.org/abs/1411.1785


Short flow-time expansion
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Expansion proposed by Lüscher and Weisz

For composite operators, such as

Luscher & Weisz, JHEP (2011) 051

See Robert Harlander’s talk yesterday
Harlander & Neumann, JHEP 06 (2016) 161

https://arxiv.org/abs/1101.0963
https://arxiv.org/abs/1606.03756


Short flow-time expansion
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In general

Given a complete set of operators, this expansion can be inverted
The inverse expansion is a more natural formulation from the lattice perspective

To extract perturbative coefficients requires carefully-chosen Greens functions

Solved order-by-order in the coupling constant

Suzuki, PTEP (2013) 083B03
“Smeared OPE” - CJM & Orginos, PRD 91 (2015) 074513

“Flowed OPE” - Harlander et al., JHEP 08 (2020) 109

https://arxiv.org/abs/1304.0533
https://arxiv.org/abs/1501.05348
https://arxiv.org/abs/2007.01057


Short flow-time expansion
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In general

Given a complete set of operators, this expansion can be inverted
The inverse expansion is a more natural formulation from the lattice perspective

To extract perturbative coefficients requires carefully-chosen Greens functions

Solved order-by-order in the coupling constant
Natural to associate the small flow-time expansion with perturbation theory, but 
from the lattice perspective, the coefficients can, and sometimes must, be 
determined nonperturbatively

Suzuki, PTEP (2013) 083B03
“Smeared OPE” - CJM & Orginos, PRD 91 (2015) 074513

“Flowed OPE” - Harlander et al., JHEP 08 (2020) 109

https://arxiv.org/abs/1304.0533
https://arxiv.org/abs/1501.05348
https://arxiv.org/abs/2007.01057


Short flow-time expansion
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Particularly powerful in the presence of mixing with lower-dimensional operators

Examples given yesterday
(1) CP-violating operators relevant to nucleon electric dipole moments

Four-quark effective operators
(2) Twist-2 operators on the lattice

For power-divergent mixing in the continuum, short flow-time coefficient must be 
determined nonperturbatively
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Outline

Operator product expansions and the short flow-time expansion

An application of the short flow-time expansion
Gluon momentum fraction of the nucleon

Systematic and quantitative error estimates
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Fan et al., PRD 107 (2023) 034505

Gluon momentum fraction of the nucleon

Note contrast with A Shindler’s talk, which referred 
to the precise calculations of quark PDF moments!

https://arxiv.org/abs/2208.00980


Gluon momentum fraction of the pion
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Good et al., PRD 109 (2024) 114509

https://arxiv.org/abs/2310.12034


Parton distribution functions
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Parton distribution functions (PDFs) encode longitudinal partonic structure of hadrons
● Directly connect the standard model to nuclear physics
● Important source of systematic uncertainties at hadron colliders

Deep inelastic scattering is the primary theoretical and experimental probe of PDFs

In QFT, PDFs are defined through matrix elements of fields at light-like separations

perturbative Wilson coefficient

nonperturbative PDF



The challenge
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One “traditional” approach
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Determine the Mellin moments of PDFs

Through an operator product expansion, moments are related to local twist-2 operators

Given a sufficient number of moments, one can reconstruct the original function

See A Shindlers talk



x-dependent parton distributions

Ji, PRL 110 (2013) 262002

PDFs

quasi PDFs pseudo PDFs

Radyushkin, PRD 96 (2017) 034025

Large momentum 
effective theory 

(LaMET)

Short distance 
factorisation

(SDF)

perturbation theory
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Gradient flow applied in: Monahan & Orginos JHEP 03 (2017) 116
Monahan, PRD 97 (2018) 054507
Shindler, PRD 110 (2024) L051503

Shindler, arXiv:2410.00198

https://arxiv.org/abs/1305.1539
https://arxiv.org/abs/1705.01488
https://arxiv.org/abs/1612.01584
https://arxiv.org/abs/1710.04607
https://arxiv.org/abs/2311.18704
https://arxiv.org/abs/2410.00198


HadStruc calculations
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Khan et al., PRD 104 (2021) 094516

https://arxiv.org/abs/2107.08960


HadStruc calculations
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Egerer et al., PRD 106 (2022) 094511Khan et al., PRD 104 (2021) 094516

https://arxiv.org/abs/2207.08733
https://arxiv.org/abs/2107.08960


Gluon momentum fraction via the SFTE
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Gradient flow provides controlled smearing method for improved signal-to-noise ratio

Properties of the flow also advantageous for renormalisation
● Gauge invariant: avoids mixing with gauge noninvariant operators
● Does not require additional nonperturbative calculation
● NNLO perturbative matching already available

In the future
● Nonperturbative running to perturbative scales a possibility
● NNLO likely to become available

See A Hasenfratz’s talk

Harlander et al., EPJC 78 (2018) 944

https://arxiv.org/abs/1808.09837


Extracting the gluon momentum fraction
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Gluon momentum fraction related to the energy-momentum tensor

Extracted via two possible operators

with hadronic matrix elements

In the following we neglect mixing 
with isoscalar quark contributions



Extracting the gluon momentum fraction
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Finite gluon momentum fraction extracted as a function of flow time

Related to the result in the MS-bar scheme via the (inverse) short flow-time expansion

whose coefficients are known to NNLO in perturbation theory

Product of scales set by

Harlander et al., EPJC 78 (2018) 944

https://arxiv.org/abs/1808.09837


Extracting the gluon momentum fraction

26

DRAFT

DRAFT

Jay & Neil, PRD 103 (2021) 114502

https://arxiv.org/abs/2008.01069


Gluon momentum fraction: flow-time dependence
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DRAFT

DRAFT



Gluon momentum fraction: scale dependence
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DRAFT

DRAFT
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Outline

Operator product expansions and the short flow-time expansion

Applications of the short flow-time expansion

Systematic and quantitative error estimates?
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Flow-time dependence logarithmic at one-loop and log^n beyond that
- Deviations at large flow-time expected to be polynomial in the flow-time
- In principle, flow-time must be smaller than all other physical scales
- On the lattice, discretisation effects relevant at very short flow times
- Leads to a “window problem”

Short flow-time expansion coefficients calculable in perturbation theory
- Should be independent of external states

Systematic tests of the short flow-time expansion
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Flow-time dependence logarithmic at one-loop and log^n beyond that
- Deviations at large flow-time expected to be polynomial in the flow-time
- In principle, flow-time must be smaller than all other physical scales
- On the lattice, discretisation effects relevant at very short flow times
- Leads to a “window problem”

Short flow-time expansion coefficients calculable in perturbation theory
- Should be independent of external states

Systematic tests of the short flow-time expansion

In principle, provides a test of validity of the SFTE
For example: a comparison of weak coupling lattice simulations via 

hadronic states with perturbative calculations using external partonic states
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Flow-time dependence logarithmic at one-loop and log^n beyond that
- Deviations at large flow-time expected to be polynomial in the flow-time
- In principle, flow-time must be smaller than all other physical scales
- On the lattice, discretisation effects relevant at very short flow times
- Leads to a “window problem”

Short flow-time expansion coefficients calculable in perturbation theory
- Should be independent of external states
- Detailed perturbative analysis of small flow-time limit feasible

- Enables comparison with high-precision data

Systematic tests of the short flow-time expansion

Suzuki & Takaura, PTEP (2021) 073B02

https://arxiv.org/abs/2102.02174
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Short flow-time expansion 
- Relates operators at finite flow time to renormalised operators at zero flow time
- Operator product expansion in the flow time
- Coefficients calculable in perturbation theory or nonperturbatively

Valid at the operator level in the short flow-time limit
- Short flow-time defined by all physical scales of relevant processes

Powerful tool for extracting renormalised operators from lattice calculations
- Particularly powerful for power-divergent operators

Precision lattice calculations require precision estimates of systematic uncertainties

Summary



Short flow-time expansion: open questions*
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What is known of the properties to all orders in perturbation theory?

Can the radius of convergence be shown to be non-zero?

To what extent is this really (or really analogous to) an operator product expansion?

Does the validity of the expansion in bare operators hold beyond perturbation theory?

Can one analyse the window problem other than through numerical experiment?

What defines small flow time and can practical lattice calculations overcome the window 
problem in high-precision scenarios (at the 0.2 to 0.5% level)?

*These may simply reflect my ignorance



Thank you!

cjmonahan@coloradocollege.edu

Zürich Gradient Flow Workshop 2025


