Using Gradient Flow to Renormalise Matrix Elements for Meson Mixing and Lifetimes

Matthew Black

In collaboration with: R. Harlander, J. Kohnen, F. Lange, A. Rago, A. Shindler, O. Witzel

February 12, 2025

THE UNIVERSITY of EDINBURGH

Matthew Black

- ► B-meson mixing and lifetimes are measured experimentally to high precision
 - ► Key observables for probing New Physics ► high precision in theory needed!

3

► For *B* lifetimes and mixing, we use the **Heavy Quark Expansion**

$$\Gamma(H_Q) = \Gamma_3 \langle \mathcal{O}_3 \rangle + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_Q^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_Q^3} + \dots + 16\pi^2 \left[\widetilde{\Gamma}_6 \frac{\langle \widetilde{\mathcal{O}}_6 \rangle}{m_Q^3} + \widetilde{\Gamma}_7 \frac{\langle \widetilde{\mathcal{O}}_7 \rangle}{m_Q^4} + \dots \right]$$

 \triangleright $\langle \tilde{\mathcal{O}}_6 \rangle$ are leading uncertainties for both B lifetimes and mixing

- Four-quark $\Delta B = 0$ and $\Delta B = 2$ matrix elements can be determined from lattice QCD simulations
- ▶ $\Delta B = 2$ well-studied by several groups ➡ precision increasing
 - → Preliminary $\Delta K = 2$ for Kaon mixing with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]
- ▶ $\Delta B = 0$ ➡ exploratory studies from \sim 20 years ago
 - Contributions from statistically-noisy diagrams
 - \blacktriangleright Mixing with lower dimension operators in renormalisation

- Four-quark $\Delta B = 0$ and $\Delta B = 2$ matrix elements can be determined from lattice QCD simulations
- ▶ $\Delta B = 2$ well-studied by several groups ➡ precision increasing
 - → Preliminary $\Delta K = 2$ for Kaon mixing with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]
- ► $\Delta B = 0$ ➡ exploratory studies from \sim 20 years ago
 - Contributions from statistically-noisy diagrams
 - Mixing with lower dimension operators in renormalisation

New Developments:

- ► [Lin, Detmold, Meinel '22] ➡ spectator effects in b hadrons
 - Focus on lifetime ratios for both B mesons and Λ_b baryon
 - → Isospin breaking, $\langle B | \mathcal{O}^d \mathcal{O}^u | B \rangle$
 - \blacktriangleright Position-space renormalisation + perturbative matching to MS
- This work; [Black et al. '23], [Black et al. '24]
 - Goal is individual $\Delta B = 0$ matrix elements for B mesons
 - Non-perturbative gradient flow renormalisation
 - \blacktriangleright Perturbative matching to $\overline{\mathrm{MS}}$ in short-flow-time expansion

Operators — **Current Status**

$\Delta B = 2$ Operators — Literature Results

 $\blacktriangleright \Delta B = 2$ Bag parameters well-studied on the lattice and with QCD sum rules

- ► See also ongoing work by RBC/UKQCD and JLQCD [Boyle et al '21] [Tsang, Lattice '23]
- Dimension-7 matrix elements calculated for first time [HPQCD '19]

$\Delta B = 0$ — Literature Results

➤ Sum rules results taken in HQET limit

► No complete unquenched lattice simulations to date!

Why?

$\Delta B = 0$ — Lattice Sketch

- > Start of calculation follows similar to operators for neutral meson mixing
 - \blacktriangleright Well-established on lattice!

$\Delta B = 0$ — Lattice Sketch

> Start of calculation follows similar to operators for neutral meson mixing

 \blacktriangleright Well-established on lattice!

But

$\Delta B = 0$ — Lattice Sketch

> Start of calculation follows similar to operators for neutral meson mixing

➡ Well-established on lattice!

But

Gradient Flow

Gradient Flow — Short-Flow-Time Expansion

> Well-studied for e.g. energy-momentum tensor [Makino, Suzuki '14] [Harlander, Kluth, Lange '18]

► Re-express effective Hamiltonian in terms of 'flowed' operators:

Gradient Flow — Short-Flow-Time Expansion

Well-studied for e.g. energy-momentum tensor [Makino, Suzuki '14] [Harlander, Kluth, Lange '18]

► Re-express effective Hamiltonian in terms of 'flowed' operators:

▶ Matrix element $\langle \mathcal{O}_m \rangle(\mu)$ in MS found in $\tau \to 0$ limit ➡ 'window' problem

- ➡ large systematic effects at very small flow times
- \blacktriangleright large flow time dominated by operators $\propto O(au)$

Matrix Elements without Gradient Flow (Schematic)

13

Matrix Elements with Gradient Flow (Schematic)

Lattice Details

\blacktriangleright We use RBC/UKQCD's 2+1 flavour DWF + Iwasaki gauge action ensembles

	L	T	$a^{-1}/{ m GeV}$	$am_l^{\rm sea}$	$am_{\!s}^{\rm sea}$	$M_{\pi}/{ m MeV}$	$srcs \times N_{conf}$	
C1	24	64	1.7848	0.005	0.040	340	32×101	
C2	24	64	1.7848	0.010	0.040	433	32×101	
M1	32	64	2.3833	0.004	0.030	302	32×79	
M2	32	64	2.3833	0.006	0.030	362	32×89	[Allton et al. '0
M3	32	64	2.3833	0.008	0.030	411	32×68	[Aoki et al. '10]
F1S	48	96	2.785	0.002144	0.02144	267	24×98	[Blum et al. '14 [Bovle et al. '17

> For strange quarks tuned to physical value, $am_a \ll 1$

- For heavy b quarks, $am_q > 1 \Rightarrow$ large discretisation effects X
 - \blacktriangleright manageable for physical *c* quarks instead
 - ➡ stout-smeared Möbius DWF [Cho et. al '15]

Exploratory setup using physical charm and strange quarks

 $\Rightarrow \Delta B = 0, 2 \Rightarrow \Delta Q = 0, 2$, for generic heavy quark Q

- 1. Complete exploratory studies in simplified setup without additional extrapolations
 - ➡ test case for gradient flow renormalisation and short-flow-time expansion procedure
 - simulate physical charm and strange quarks
- 2. Use $\Delta {\it Q}=2$ matrix elements for further validation of method
 - \blacktriangleright neutral charm-strange meson \rightleftharpoons proxy to short-distance D^0 mixing (+ spectator effects)
- 3. Pioneer $\Delta Q = 0$ matrix element calculation for lifetime differences
- 4. Run full-scale simulations for B meson mixing and lifetimes
 - \blacktriangleright simulate at multiple charm-like masses to extrapolate to b
 - ➡ consider both light and strange spectators
- 5. Tackle additional contributions for absolute lifetimes
 - ➡ 'eye' diagrams

Analysis and Results

$\Delta Q = 2$ Bag Parameter Extraction

> Three-point correlation function:

$$C_{\mathcal{Q}_i}^{\mathrm{3pt}}(t,\Delta T,\tau) = \sum_{n,n'} \frac{\langle P_n | Q_i | \bar{P}_{n'} \rangle(\tau)}{4M_n M_{n'}} e^{-(\Delta T - t)M_n} e^{-tM_{n'}} \underset{t_0 \ll t \ll t_0 + \Delta T}{\Longrightarrow} \frac{\langle P \rangle^2}{4M^2} \langle Q_i \rangle(\tau) e^{-\Delta T M_n} e^{-\Delta T M_n} e^{-tM_{n'}} \overset{\mathrm{spt}}{\longrightarrow} \frac{\langle P \rangle^2}{4M^2} \langle Q_i \rangle(\tau) e^{-\Delta T M_n} e^{-tM_{n'}} e^{-tM_{n'}} \overset{\mathrm{spt}}{\longrightarrow} \frac{\langle P \rangle^2}{4M^2} \langle Q_i \rangle(\tau) e^{-\Delta T M_n} e^{-tM_{n'}} e^{-tM_{n'}$$

► Normalise with two-point correlation functions → $\mathcal{B}_i = \frac{\langle Q_i \rangle}{\eta_i m^2 f^2}$

 \blacktriangleright Measure along positive flow time au

$\Delta Q = 2$ Bag Parameter Extraction

➤ Single correlator fit at each flow time

Mixing Q_1 Operator vs GF time

> operator is renormalised in 'GF' scheme as it is evolved along flow time
 > data at same lattice spacing overlap ⇒ no light sea quark effects

Mixing Q_1 Operator vs GF time

➤ different lattice spacings overlap in physical flow time ➡ mild continuum limit

Mixing Q_1 Matched Results

- ► Combine with perturbative matching at NNLO (+ higher logs) [Harlander, Lange '22] [Borgulat et al. '23]
- Consistency with literature
- Different perturbative orders show agreement
 - systematic errors needed for meaningful comparison
- Preliminary value

0.779(4)

➡ take spread at NNLO and higher

$\Delta Q = 0$ Bag Parameter Extraction

Matthew Black

Lifetimes Operators vs GF time

GF Renormalisation for Mixing and Lifetimes

Matthew Black

► Combine with perturbative matching at NNLO (+ higher logs) [Harlander, Lange '22] [Borgulat et al. '23]

► Increasing perturbative orders show convergence

► Preliminary value

1.107(12)

➡ take spread at NNLO and higher

0.8

NLO $\overline{\text{MS}} B_1$

 $+\alpha_s^3 \log s$

 $+\alpha_{*}^{4}$ logs

 $+\alpha_s^5 \log s$

NNLO $\overline{\text{MS}} B_1$

 Φ

Φ

₫

Φ

0.6

► Combine with perturbative matching at NNLO (+ higher logs) [Harlander, Lange '22] [Borgulat et al. '23]

0.8

 \blacktriangleright Combine with perturbative matching at NNLO \rightarrow see Jonas' talk

➡ higher logs in progress

- \blacktriangleright Combine with perturbative matching at NNLO \rightarrow see Jonas' talk
 - ➡ higher logs in progress

Summary and Outlook

Summary

- $\blacktriangleright \Delta B = 0$ four-quark matrix elements are strongly-desired quantities
 - Standard renormalisation introduces mixing with operators of lower mass dimension
 - \blacktriangleright We aim to use the fermionic gradient flow as a non-perturbative renormalisation procedure
- > We calculate $\Delta Q = 2$ matrix elements as a test case for the short-flow-time expansion
 - ➡ preliminary results consistent with literature
- ▶ Analysis of $\Delta Q = 0$ matrix elements for lifetime differences progressing with promise

GF Renormalisation for Mixing and Lifetimes

Outlook

- Complete exploratory work with physical charm-strange meson
 - ➡ GF→ $\overline{\mathrm{MS}}$ analysis for all dimension-six $\Delta Q = 2$ operators
 - → GF→ \overline{MS} analysis for dimension-six $\Delta Q = 0$ operators (connected pieces) → lifetime differences
 - ➡ Fully-correlated analysis to be done
- ▶ Perturbative matching needed for complete $\Delta B = 2$ basis
 - \blacktriangleright higher logs still needed for all $\Delta B = 0$ operators
- ► Complete full-scale simulations for *B* meson mixing and lifetimes
 - \blacktriangleright multiple heavier-than-charm masses \Rightarrow extrapolate to physical b mass
 - consider both strange and light spectators
- ► Eye diagrams needed for absolute lifetime operators
 - ➡ to be included in both lattice simulations and perturbative matching calculations

30

Backup Slides

$\Delta B = 2$ Operators

▶ Mass difference of neutral mesons $\Delta M_q (q = d, s)$ governed by $\Delta B = 2$ four-quark operators

► General BSM basis has 5 dimension-six operators

$Q_1^q = \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_5) q^{\alpha} \ \bar{b}^{\beta} \gamma_{\mu} (1 - \gamma_5) q^{\beta},$	$\langle Q_1^q \rangle = \langle \bar{B}_q Q_1^q B_q \rangle = \frac{8}{3} f_{B_q}^2 M_{B_q}^2 B_1^q$
$Q_2^q = \bar{b}^{\alpha}(1-\gamma_5)q^{\alpha} \ \bar{b}^{\beta}(1-\gamma_5)q^{\beta},$	$\langle Q_2^q \rangle = \langle \bar{B}_q Q_2^q B_q \rangle = \frac{-5M_{B_q}^2}{3(m_b + m_q)^2} f_{B_q}^2 M_{B_q}^2 B_2^q,$
$Q_3^q = \bar{b}^{\alpha}(1-\gamma_5)q^{\beta} \ \bar{b}^{\beta}(1-\gamma_5)q^{\alpha},$	$\langle Q_3^q \rangle = \langle \bar{B}_q Q_3^q B_q \rangle = \frac{M_{B_q}^2}{3(m_b + m_q)^2} f_{B_q}^2 M_{B_q}^2 B_3^q,$
$Q_4^q = \bar{b}^{\alpha}(1-\gamma_5)q^{\alpha} \ \bar{b}^{\beta}(1+\gamma_5)q^{\beta},$	$\langle Q_4^q \rangle = \langle \bar{B}_q Q_4^q B_q \rangle = \left[\frac{2M_{B_q}^2}{(m_b + m_q)^2} + \frac{1}{3} \right] f_{B_q}^2 M_{B_q}^2 B_4^q,$
$Q_5^q = \bar{b}^{\alpha}(1-\gamma_5)q^{\beta} \ \bar{b}^{\beta}(1+\gamma_5)q^{\alpha},$	$\langle Q_5^q \rangle = \langle \bar{B}_q Q_5^q B_q \rangle = \left[\frac{2M_{B_q}^2}{3(m_b + m_q)^2} + 1 \right] f_{B_q}^2 M_{B_q}^2 B_5^q.$

▶ In the **SM**, only Q_1^q contributes to ΔM

> Matrix elements parameterised in terms of decay constant f_{B_q} and bag parameters B_i^q

$\Delta B = 0$ Operators

> For lifetimes, the dimension-6 $\Delta B = 0$ operators are:

$$\begin{aligned} Q_{1}^{q} &= \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) q^{\alpha} \ \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) b^{\beta}, & \langle Q_{1}^{q} \rangle = \langle B_{q} | Q_{1}^{q} | B_{q} \rangle = f_{B_{q}}^{2} M_{B_{q}}^{2} \mathcal{B}_{1}^{q}, \\ Q_{2}^{q} &= \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \ \bar{q}^{\beta} (1 - \gamma_{5}) b^{\beta}, & \langle Q_{2}^{q} \rangle = \langle B_{q} | Q_{2}^{q} | B_{q} \rangle = \frac{M_{B_{q}}^{2}}{(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} \mathcal{B}_{2}^{q}, \\ T_{1}^{q} &= \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) (T^{a})^{\alpha\beta} q^{\beta} \ \bar{q}^{\gamma} \gamma_{\mu} (1 - \gamma_{5}) (T^{a})^{\gamma\delta} b^{\delta}, & \langle T_{1}^{q} \rangle = \langle B_{q} | T_{1}^{q} | B_{q} \rangle = f_{B_{q}}^{2} M_{B_{q}}^{2} \epsilon_{1}^{q}, \\ T_{2}^{q} &= \bar{b}^{\alpha} (1 - \gamma_{5}) (T^{a})^{\alpha\beta} q^{\beta} \ \bar{q}^{\gamma} (1 - \gamma_{5}) (T^{a})^{\gamma\delta} b^{\delta}, & \langle T_{2}^{q} \rangle = \langle B_{q} | T_{2}^{q} | B_{q} \rangle = \frac{M_{B_{q}}^{2}}{(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} \epsilon_{2}^{q}. \end{aligned}$$

► For simplicity of computation, we want these to be colour-singlet operators:

$$\begin{aligned} \mathcal{Q}_{1} &= \bar{b}^{\alpha} \gamma_{\mu} (1 - \gamma_{5}) q^{\alpha} \, \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) b^{\beta} \\ \mathcal{Q}_{2} &= \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \, \bar{q}^{\beta} (1 + \gamma_{5}) b^{\beta}) \\ \tau_{1} &= \bar{b}^{\alpha} \gamma_{\mu} (1 - \gamma_{5}) b^{\alpha} \, \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta} \\ \tau_{2} &= \bar{b}^{\alpha} \gamma_{\mu} (1 + \gamma_{5}) b^{\alpha} \, \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta} \end{aligned} \qquad \begin{aligned} \mathcal{Q}_{1}^{+} \\ \mathcal{Q}_{2}^{+} \\ T_{1}^{+} \\ T_{2}^{+} \end{aligned} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{1}{2N_{c}} & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2N_{c}} & 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \mathcal{Q}_{1}^{+} \\ \mathcal{Q}_{2}^{+} \\ \tau_{1}^{+} \\ \tau_{2}^{+} \end{pmatrix} \end{aligned}$$

Lifetimes \mathcal{O}_1 Continuum Limit

Lifetimes T_2 Continuum Limit

