

Universality and cutoff effects of pure gauge theories from gradient flow scales

Guilherme Catumba Alberto Ramos, Nicolas Lang

Università degli Studi di Milano-Bicocca

February 13, 2025

- **Continuum extrapolations**
 - ✤ Important but difficult

Continuum extrapolations

- ✤ Important but difficult
- Potentially complicated scaling dependence

[Husung, Marquard, and Sommer 2020]

Next talk by N. Husung

Continuum extrapolations

- ✤ Important but difficult
- Potentially complicated scaling dependence

[Husung, Marquard, and Sommer 2020]

Next talk by N. Husung

• Extrapolation valid if *a*-dependence under control

Continuum extrapolations

- ✤ Important but difficult
- Potentially complicated scaling dependence

[Husung, Marquard, and Sommer 2020]

Next talk by N. Husung

• Extrapolation valid if *a*-dependence under control

- Universality of lattice actions

 - \clubsuit Which $S_{\rm latt}$ shows smaller cutoff effects

Continuum extrapolations

- ✤ Important but difficult
- Potentially complicated scaling dependence

[Husung, Marquard, and Sommer 2020]

Next talk by N. Husung

- Extrapolation valid if
 a-dependence under control
- Understand scale setting
 - ✤ Matching an energy scale to an experiment
 - ✤ Required for physical predictions
 - t_0 or w_0 very precise
 - ✤ Systematics of extrapolation

- Universality of lattice actions
 - ✤ Are we in the scaling region? $a \in (0.05 - 0.1)$ fm Renormalization scheme/observable independence
 - \clubsuit Which $S_{\rm latt}$ shows smaller cutoff effects

How to understand cutoff effects?

Symanzik effective theory

P Any lattice action S_{latt} can be described by an effective continuum action

$$S_{\text{latt}} \stackrel{a \to 0}{\sim} S_{\text{cont}} + \frac{a^2 S_2}{2} + \dots \longrightarrow \langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + O_1 a^{2+\eta} + \dots$$

How to understand cutoff effects?

Symanzik effective theory

Any lattice action S_{latt} can be described by an effective continuum action

$$S_{\text{latt}} \stackrel{a \to 0}{\sim} S_{\text{cont}} + \frac{a^2 S_2}{2} + \dots \longrightarrow \langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + O_1 a^{2+\eta} + \dots$$

Spectral quantities are simpler

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + \langle OS_2 \rangle a^2 + \dots$$

but hard to compute (StN, ...)

How to understand cutoff effects?

Symanzik effective theory

Any lattice action S_{latt} can be described by an effective continuum action

$$S_{\text{latt}} \stackrel{a \to 0}{\sim} S_{\text{cont}} + \frac{a^2 S_2}{2} + \dots \longrightarrow \langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + O_1 a^{2+\eta} + \dots$$

Spectral quantities are simpler

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + \langle OS_2 \rangle a^2 + \dots$$

but hard to compute (StN, ...)

Gradient Flow Quantities

- Small systematic
- Known Symanzik expansion

Gradient flow scales

to scales [Lüscher 2010]

$$t^{2} \langle E(t) \rangle \Big|_{t=t_{c}} = \begin{cases} 0.15, \quad t_{2} \longrightarrow \text{ short distance} \\ 0.3, \quad t_{0} \longrightarrow \text{ medium distance} \\ 0.5, \quad t_{1} \longrightarrow \text{ long distance} \end{cases}$$

 $\blacktriangleright w_0 ext{ scales [Borsányi et al. 2012]}$

$$t\frac{\mathrm{d}}{\mathrm{d}t}t^2 \left\langle E(t)\right\rangle \bigg|_{t=w_c^2} = c$$

Gradient Flow is non-local at t > 0

- Gradient Flow is non-local at t > 0
- Introduce 5-dimensional formulation:

 $S_{5\mathrm{D}} = S_{\mathrm{G}} + S_{\mathrm{flow}}$

- Gradient Flow is non-local at t > 0
- Introduce 5-dimensional formulation:
 - \bullet (Theory + Flow) as a 5D local field theory [Martin Luscher and Peter Weisz 2011]

 $S_{5\mathrm{D}} = S_{\mathrm{G}} + S_{\mathrm{flow}}$

- Gradient Flow is non-local at t > 0
- Introduce 5-dimensional formulation:
 - \bullet (Theory + Flow) as a 5D local field theory [Martin Luscher and Peter Weisz 2011]

 $S_{5\mathrm{D}} = S_{\mathrm{G}} + S_{\mathrm{flow}}$

- Gauge action $S_{\rm G}$
- Flow action S_{flow}
- $L_{\mu} \text{ enforces flow equation}$ (Lagrangian multiplier)
- 'Classical' theory at t > 0

 $Extra \ contributions \ [Ramos \ and \ Sint \ 2016]$

$$S_{\text{latt}}^{\text{5D}} \stackrel{a \to 0}{\sim} S_{\text{cont}}^{\text{5D}} + a^2 S_{2,G} + a^2 S_{2,\text{flow}} + \dots$$

t = 0 boundary terms ('interesting' ones)

Extra contributions [Ramos and Sint 2016]

$$S_{\text{latt}}^{5\text{D}} \stackrel{a \to 0}{\sim} S_{\text{cont}}^{5\text{D}} + a^2 S_{2,G} + a^2 S_{2,\text{flow}} + \dots$$

t = 0 boundary terms ('interesting' ones)

- \bullet affects all quantities
- \Rightarrow choice of action (Wilson, ...)

Extra contributions [Ramos and Sint 2016]

$$S_{\text{latt}}^{5\text{D}} \stackrel{a \to 0}{\sim} S_{\text{cont}}^{5\text{D}} + a^2 S_{2,G} + a^2 S_{2,\text{flow}} + \dots$$

t = 0 boundary terms ('interesting' ones)

- affects all quantities
- \clubsuit choice of action (Wilson, ...)
- \clubsuit 2 operators for YM

Extra contributions [Ramos and Sint 2016]

$$S_{\text{latt}}^{5\text{D}} \stackrel{a \to 0}{\sim} S_{\text{cont}}^{5\text{D}} + a^2 S_{2,G} + a^2 S_{2,\text{flow}} + \dots$$

t = 0 boundary terms ('interesting' ones)

- \checkmark affects all quantities
- \clubsuit choice of action (Wilson, ...)
- \clubsuit 2 operators for YM
- 1 flow operator equivalent to t = 0 condition

$$V_{\mu}(x,t=0) = e^{c_b g_0^2 \partial_{x,\mu} S_{\rm g}[U]} U_{\mu}(x)$$

Extra contributions [Ramos and Sint 2016]

$$S_{\text{latt}}^{5\text{D}} \stackrel{a \to 0}{\sim} S_{\text{cont}}^{5\text{D}} + a^2 S_{2,G} + a^2 S_{2,\text{flow}} + \dots$$

t = 0 boundary terms ('interesting' ones)

Flow-only correction

- \checkmark affects all quantities
- \clubsuit choice of action (Wilson, ...)
- \clubsuit 2 operators for YM
- 1 flow operator equivalent to t = 0 condition

$$V_{\mu}(x,t=0) = e^{c_b g_0^2 \partial_{x,\mu} S_{\rm g}[U]} U_{\mu}(x)$$

 \bullet g_0 -dependent improvement

Extra contributions [Ramos and Sint 2016]

$$S_{\text{latt}}^{5\text{D}} \stackrel{a \to 0}{\sim} S_{\text{cont}}^{5\text{D}} + a^2 S_{2,G} + a^2 S_{2,\text{flow}} + \dots$$

t = 0 boundary terms ('interesting' ones)

- \blacklozenge affects all quantities
- \clubsuit choice of action (Wilson, ...)
- \clubsuit 2 operators for YM
- 1 flow operator equivalent to t = 0 condition

$$V_{\mu}(x,t=0) = e^{c_b g_0^2 \partial_{x,\mu} S_{\rm g}[U]} U_{\mu}(x)$$

• g_0 -dependent improvement

- Flow-only correction
 - \bullet affects flow quantities only
 - \checkmark choice of flow (Wilson, Symanzik,...)

Extra contributions [Ramos and Sint 2016]

$$S_{\text{latt}}^{5\text{D}} \stackrel{a \to 0}{\sim} S_{\text{cont}}^{5\text{D}} + a^2 S_{2,G} + a^2 S_{2,\text{flow}} + \dots$$

t = 0 boundary terms ('interesting' ones)

- \blacklozenge affects all quantities
- \Rightarrow choice of action (Wilson, ...)
- \blacksquare 2 operators for YM
- 1 flow operator equivalent to t = 0 condition

$$V_{\mu}(x,t=0) = e^{c_b g_0^2 \partial_{x,\mu} S_{\rm g}[U]} U_{\mu}(x)$$

• g_0 -dependent improvement

- Flow-only correction
 - \bullet affects flow quantities only
 - ✤ choice of flow (Wilson, Symanzik,...)
 - 1 flow operator at t > 0
 - \bullet exact classical a^2 -improvement

Extra contributions [Ramos and Sint 2016]

$$S_{\text{latt}}^{5\text{D}} \stackrel{a \to 0}{\sim} S_{\text{cont}}^{5\text{D}} + a^2 S_{2,G} + a^2 S_{2,\text{flow}} + \dots$$

t = 0 boundary terms ('interesting' ones)

- \blacklozenge affects all quantities
- \clubsuit choice of action (Wilson, ...)
- ✤ 2 operators for YM
- 1 flow operator equivalent to t = 0 condition

$$V_{\mu}(x,t=0) = e^{c_{\rm b}g_0^2 \partial_{x,\mu} S_{\rm g}[U]} U_{\mu}(x)$$

• g_0 -dependent improvement

- Flow-only correction
 - \checkmark affects flow quantities only
 - \clubsuit choice of flow (Wilson, Symanzik,...)
 - 1 flow operator at t > 0
 - ✤ exact classical a^2 -improvement
 - Flow observables
 - $\langle O \rangle \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 O_2 + \dots$
 - \bullet exact classical a^2 -improvement

Extra contributions [Ramos and Sint 2016]

$$S_{\text{latt}}^{5\text{D}} \stackrel{a \to 0}{\sim} S_{\text{cont}}^{5\text{D}} + a^2 S_{2,G} + a^2 S_{2,\text{flow}} + \dots$$

t = 0 boundary terms ('interesting' ones)

- $\bullet \bullet$ affects all quantities
- \Rightarrow choice of action (Wilson, ...)
- ✤ 2 operators for YM
- 1 flow operator equivalent to t = 0 condition

$$V_{\mu}(x,t=0) = e^{c_b g_0^2 \partial_{x,\mu} S_{\rm g}[U]} U_{\mu}(x)$$

• g_0 -dependent improvement

- Flow-only correction
 - \bullet affects flow quantities only
 - ✤ choice of flow (Wilson, Symanzik,...)
 - 1 flow operator at t > 0
 - \bullet exact classical a^2 -improvement
- Flow observables $a \rightarrow 0$ (a)

 $\langle O \rangle \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 O_2 + \dots$

- exact classical a^2 -improvement

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle O_2 \rangle + \left\langle OS_{2,\text{G}} \right\rangle + \left\langle OS_{2,\text{flow}} \right\rangle + \frac{c_b}{\mathrm{d}t} \left\langle O \right\rangle \Big|_{t_0} \right]$$

[Ramos and Sint 2016]

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle O_2 \rangle + \langle OS_{2,\text{G}} \rangle + \langle OS_{2,\text{flow}} \rangle + \frac{c_b}{dt} \frac{d}{dt} \langle O \rangle \Big|_{t_0} \right]$$

Theory is 'classical' for t > 0 – complete a^2 -improvement

[Ramos and Sint 2016]

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle O_2 \rangle + \langle OS_{2,\text{G}} \rangle + \langle OS_{2,\text{flow}} \rangle + \frac{c_b}{dt} \frac{\mathrm{d}}{\mathrm{d}t} \langle O \rangle \Big|_{t_0} \right]$$

Theory is 'classical' for t > 0 – complete a^2 -improvement

Action density: O = E(t)Usual discretization: Plaquette, Clover

[Ramos and Sint 2016]

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle O_2 \rangle + \langle OS_{2,\text{G}} \rangle + \langle OS_{2,\text{flow}} \rangle + \frac{c_b}{dt} \langle O \rangle \Big|_{t_0} \right]$$

Theory is 'classical' for t > 0 – complete a^2 -improvement

- Action density: O = E(t)Usual discretization: Plaquette, Clover
 - ✤ Improved observable

$$E^{\text{imp}}(t) = \frac{4}{3}E^{\text{pl}}(t) - \frac{1}{3}E^{\text{cl}}(t)$$
$$E^{\text{imp}}_{2} = 0$$

[Ramos and Sint 2016]

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle O_2 \rangle + \langle OS_{2,\text{G}} \rangle + \langle OS_{2,\text{flow}} \rangle + \frac{c_b}{dt} \langle O \rangle \Big|_{t_0} \right]$$

Theory is 'classical' for t > 0 – complete a^2 -improvement

- Action density: O = E(t)Usual discretization: Plaquette, Clover
 - ✤ Improved observable

$$E^{\text{imp}}(t) = \frac{4}{3}E^{\text{pl}}(t) - \frac{1}{3}E^{\text{cl}}(t)$$

 $E_2^{\text{imp}} = 0$

Flow discretization

[Ramos and Sint 2016]

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle \mathcal{O}_2 \rangle + \langle OS_{2,\text{G}} \rangle + \langle OS_{2,\text{flow}} \rangle + c_b \frac{\mathrm{d}}{\mathrm{d}t} \langle O \rangle \Big|_{t_0} \right]$$

Theory is 'classical' for t > 0 – complete a^2 -improvement

- Action density: O = E(t)Usual discretization: Plaquette, Clover
 - ✤ Improved observable

$$E^{\text{imp}}(t) = \frac{4}{3}E^{\text{pl}}(t) - \frac{1}{3}E^{\text{cl}}(t)$$

 $E_2^{\text{imp}} = 0$

Flow discretization

• Use Zeuthen flow $S_{2,\text{flow}} = 0$

$$a^{2} \frac{\mathrm{d}}{\mathrm{d}t} V_{\mu}(x,t) = -g_{0}^{2} \left(1 + \frac{a^{2}}{12} D_{\mu} D_{\mu}^{*} \right) \frac{\delta S^{\mathrm{LW}}[V]}{\delta V_{\mu}(x,t)} V_{\mu}(x,t)$$

$$\left\langle O \right\rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \left\langle O \right\rangle + a^2 \left[\underbrace{\left\langle \mathcal{O}_2 \right\rangle}_{+} + \left\langle O S_{2,\text{G}} \right\rangle + \underbrace{\left\langle O S_{2,\text{flow}} \right\rangle}_{+} + \frac{c_b}{dt} \frac{d}{dt} \left\langle O \right\rangle \Big|_{t_0} \right]$$

- P $S_{2,G}$ are the interesting terms
 - \clubsuit continuum extrapolation of spectral quantities
 - \Rightarrow study of universality

$$\left\langle O \right\rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \left\langle O \right\rangle + a^2 \left[\underbrace{\left\langle \mathcal{O}_2 \right\rangle}_{+} + \left\langle O S_{2,\text{G}} \right\rangle + \underbrace{\left\langle O S_{2,\text{flow}} \right\rangle}_{+} + \frac{c_b}{dt} \left\langle O \right\rangle \Big|_{t_0} \right]$$

- $P_{2,G}$ are the interesting terms
 - \Rightarrow continuum extrapolation of spectral quantities
 - \clubsuit study of universality
- $c_b(g_0^2)$
 - ★ t = 0 shift can be seen as a shift at t > 0Improvement with $\langle E(t + c_b(g_0)a^2) \rangle$? similar to τ -shift [Cheng et al. 2014]
 - Lüscher-Weisz TL imp. action: $c_b = 0 + \mathcal{O}(g_0^2)$
 - t_0 -scales more sensitive than w_0

$$\left\langle O \right\rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \left\langle O \right\rangle + a^2 \left[\underbrace{\left\langle \mathcal{O}_2 \right\rangle}_{+} + \left\langle O S_{2,\text{G}} \right\rangle + \underbrace{\left\langle O S_{2,\text{flow}} \right\rangle}_{+} + \frac{c_b}{dt} \left\langle O \right\rangle \Big|_{t_0} \right]$$

- $P_{2,G}$ are the interesting terms
 - \checkmark continuum extrapolation of spectral quantities
 - \clubsuit study of universality
- $c_b(g_0^2)$
 - ↓ t = 0 shift can be seen as a shift at t > 0Improvement with $\langle E(t + c_b(g_0)a^2) \rangle$? similar to τ-shift [Cheng et al. 2014]
 - Lüscher-Weisz TL imp. action: $c_b = 0 + \mathcal{O}(g_0^2)$
 - t_0 -scales more sensitive than w_0
- Tree-Level a^2 -improvement
 - TL imp. LW gauge action $S_{2,G} = 0 + \mathcal{O}(g_0^2)$

$$\left\langle O \right\rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \left\langle O \right\rangle + a^2 \left[\underbrace{\left\langle \mathcal{O}_2 \right\rangle}_{+} + \left\langle O S_{2,\text{G}} \right\rangle + \underbrace{\left\langle O S_{2,\text{flow}} \right\rangle}_{+} + \frac{c_b}{dt} \left\langle O \right\rangle \Big|_{t_0} \right]$$

- $P_{2,G}$ are the interesting terms
 - \checkmark continuum extrapolation of spectral quantities
 - \clubsuit study of universality
- $c_b(g_0^2)$
 - t = 0 shift can be seen as a shift at t > 0

Improvement with $\langle E(t+c_b(g_0)a^2)\rangle$? similar to au-shift [Cheng et al. 2014]

- Lüscher-Weisz TL imp. action: $c_b = 0 + \mathcal{O}(g_0^2)$
- t_0 -scales more sensitive than w_0
- Tree-Level a^2 -improvement
 - TL imp. LW gauge action $S_{2,G} = 0 + \mathcal{O}(g_0^2)$
 - Zeuthen Flow $-S_{2,\text{flow}} = 0$
 - Improved Observable $\langle O_2 \rangle = 0$

Understanding common scaling tests

↔ Very precise quantity
 ↔ Known limit: lim_{a→0} t₀^{pl}/t₀^{cl} = 1

$$t_0^{\text{pl}} \stackrel{a \to 0}{\sim} \langle t_0 \rangle - \frac{a^2}{D_0} \left[t_0^2 \left\langle E_2^{\text{pl}}(t_0) \right\rangle + t_0^2 \left\langle E(t_0) S_{2,\text{G}} \right\rangle + t_0^2 \left\langle E(t_0) S_{2,\text{flow}} \right\rangle + \frac{c_b}{dt} \frac{d}{dt} t_0^2 \left\langle E(t_0) \right\rangle \Big|_{t_0} \right]$$

✤ Very precise quantity
 ✤ Known limit: lim_{a→0} t₀^{pl}/t₀^{cl} = 1

$$t_0^{\text{pl}} \stackrel{a \to 0}{\sim} \langle t_0 \rangle - \frac{a^2}{D_0} \left[t_0^2 \left\langle E_2^{\text{pl}}(t_0) \right\rangle + t_0^2 \left\langle E(t_0) S_{2,\text{G}} \right\rangle + t_0^2 \left\langle E(t_0) S_{2,\text{flow}} \right\rangle + \frac{c_b}{dt} \frac{d}{dt} t_0^2 \left\langle E(t_0) \right\rangle \Big|_{t_0} \right]$$

$$t_0^{\rm pl}/t_0^{\rm cl} \stackrel{a \to 0}{\sim} 1 - \frac{a^2}{D} \left\{ t_0^2 \left\langle E_2^{\rm pl}(t_0) \right\rangle - t_0^2 \left\langle E_2^{\rm cl}(t_0) \right\rangle \right\}$$

- \clubsuit Very precise quantity
- $\bullet \quad \text{Known limit: } \lim_{a \to 0} t_0^{\text{pl}} / t_0^{\text{cl}} = 1$

$$t_0^{\text{pl}} \stackrel{a \to 0}{\sim} \langle t_0 \rangle - \frac{a^2}{D_0} \left[t_0^2 \left\langle E_2^{\text{pl}}(t_0) \right\rangle + t_0^2 \left\langle E(t_0) S_{2,\text{G}} \right\rangle + t_0^2 \left\langle E(t_0) S_{2,\text{flow}} \right\rangle + \frac{c_b}{dt} \frac{d}{dt} t_0^2 \left\langle E(t_0) \right\rangle \Big|_{t_0} \right]$$

$$D_0 = \frac{\mathrm{d}}{\mathrm{d}t} t^2 \left\langle E(t) \right\rangle \Big|_{t_0}$$

$$t_0^{\rm pl}/t_0^{\rm cl} \stackrel{a \to 0}{\sim} 1 - \frac{a^2}{D} \left\{ t_0^2 \left\langle E_2^{\rm pl}(t_0) \right\rangle - t_0^2 \left\langle E_2^{\rm cl}(t_0) \right\rangle \right\}$$

Action effects drop out $S_{2,G}$

- ✤ Very precise quantity
- $\bullet \quad \text{Known limit: } \lim_{a \to 0} t_0^{\text{pl}} / t_0^{\text{cl}} = 1$

$$t_0^{\text{pl}} \stackrel{a \to 0}{\sim} \langle t_0 \rangle - \frac{a^2}{D_0} \left[t_0^2 \left\langle E_2^{\text{pl}}(t_0) \right\rangle + t_0^2 \left\langle E(t_0) S_{2,\text{G}} \right\rangle + t_0^2 \left\langle E(t_0) S_{2,\text{flow}} \right\rangle + \frac{c_b}{dt} \frac{d}{dt} t_0^2 \left\langle E(t_0) \right\rangle \right|_{t_0} \right]$$

$$D_0 = \frac{\mathrm{d}}{\mathrm{d}t} t^2 \left\langle E(t) \right\rangle \Big|_{t_0}$$

$$t_0^{\rm pl}/t_0^{\rm cl} \stackrel{a \to 0}{\sim} 1 - \frac{a^2}{D} \left\{ t_0^2 \left\langle E_2^{\rm pl}(t_0) \right\rangle - t_0^2 \left\langle E_2^{\rm cl}(t_0) \right\rangle \right\}$$

- Action effects drop out $S_{2,G}$
- Sensitive only to O_2
 - Improved observable $E_2^{\text{imp}} = 0$

au-shift – $t_0(c_b)/t_0$

Compute t_0 scales with a shift

$$t_0 \longrightarrow \langle E(t) \rangle$$

$$t_0(c_b) \longrightarrow \langle E(t + c_b(g_0)a^2) \rangle$$

au-shift – $t_0(c_b)/t_0$

Compute t_0 scales with a shift

$$t_0 \longrightarrow \langle E(t) \rangle$$

 $t_0(c_b) \longrightarrow \langle E(t + c_b(g_0)a^2) \rangle$

$$\frac{t_0(c_b)}{t_0} \stackrel{a \to 0}{\sim} 1 - \frac{a^2}{D_0} \left\{ \frac{c_b t_0^2 \mathrm{d}}{\mathrm{d}t} \left\langle E(t_0) \right\rangle \Big|_{t_0} \right\}$$

Action effects drop out $S_{2,G}$

au-shift – $t_0(c_b)/t_0$

Compute t_0 scales with a shift

$$t_0 \longrightarrow \langle E(t) \rangle$$

 $t_0(c_b) \longrightarrow \langle E(t + c_b(g_0)a^2) \rangle$

$$\frac{t_0(c_b)}{t_0} \stackrel{a \to 0}{\sim} 1 - \frac{a^2}{D_0} \left\{ \frac{c_b t_0^2 \mathrm{d}}{\mathrm{d}t} \left\langle E(t_0) \right\rangle \Big|_{t_0} \right\}$$

- Action effects drop out $S_{2,G}$
- Sensitive only to c_b
 - \checkmark Removed to TL by LW action

$Testing \ lattice \ artifacts-Suggestions$

Comparing t_0^{pl} , t_0^{cl} , $t_0(c_b)$, or flow discretizations provides no information on the scaling of gauge actions

Testing lattice artifacts – Suggestions

- Comparing t_0^{pl} , t_0^{cl} , $t_0(c_b)$, or flow discretizations provides no information on the scaling of gauge actions
 - TL imp. LW gauge action $-S_{2,G} = 0 + \mathcal{O}(g_0^2)$
 - Zeuthen Flow $S_{2,\text{flow}} = 0$
 - Improved Observable $E_2^{\text{imp}} = 0$

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle O_2 \rangle + \langle OS_{2,\text{G}} \rangle + \langle OS_{2,\text{How}} \rangle + \frac{c_b}{\text{d}t} \langle O \rangle \right]_{t_0} + \mathcal{O}(g_0^2 a^2)$$

$Testing \ lattice \ artifacts-Suggestions$

- Comparing t_0^{pl} , t_0^{cl} , $t_0(c_b)$, or flow discretizations provides no information on the scaling of gauge actions
 - TL imp. LW gauge action $-S_{2,G} = 0 + \mathcal{O}(g_0^2)$
 - Zeuthen Flow $S_{2,\text{flow}} = 0$
 - Improved Observable $E_2^{\text{imp}} = 0$

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle O_2 \rangle + \langle OS_{2,\text{G}} \rangle + \langle OS_{2,\text{How}} \rangle + \frac{c_b}{\text{d}t} \langle O \rangle \Big|_{t_0} \right] + \mathcal{O}(g_0^2 a^2)$$

Interest: isolate action effects $S_{2,G}$

Testing lattice artifacts – Suggestions

- Comparing t_0^{pl} , t_0^{cl} , $t_0(c_b)$, or flow discretizations provides no information on the scaling of gauge actions
 - TL imp. LW gauge action $-S_{2,G} = 0 + \mathcal{O}(g_0^2)$
 - Zeuthen Flow $S_{2,\text{flow}} = 0$
 - Improved Observable $E_2^{imp} = 0$

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle O_2 \rangle + \langle OS_{2,\text{G}} \rangle + \langle OS_{2,\text{How}} \rangle + \frac{c_b}{\text{d}t} \langle O \rangle \Big|_{t_0} \right] + \mathcal{O}(g_0^2 a^2)$$

- Interest: isolate action effects $S_{2,G}$
- Additionaly, use ratios of different scales
 - t_0/t_1 or t_0/t_2
 - 'Spectral'-like quantities

Testing lattice artifacts – Suggestions

- Comparing t_0^{pl} , t_0^{cl} , $t_0(c_b)$, or flow discretizations provides no information on the scaling of gauge actions
 - TL imp. LW gauge action $-S_{2,G} = 0 + \mathcal{O}(g_0^2)$
 - Zeuthen Flow $S_{2,\text{flow}} = 0$
 - Improved Observable $E_2^{imp} = 0$

$$\langle O \rangle_{\text{latt}} \stackrel{a \to 0}{\sim} \langle O \rangle + a^2 \left[\langle O_2 \rangle + \langle OS_{2,\text{G}} \rangle + \langle OS_{2,\text{How}} \rangle + \frac{c_b}{\text{d}t} \langle O \rangle \right]_{t_0} + \mathcal{O}(g_0^2 a^2)$$

- Interest: isolate action effects $S_{2,G}$
- Additionaly, use ratios of different scales
 - t_0/t_1 or t_0/t_2
 - 'Spectral'-like quantities
- Compare different actions

Some results for t_0 -like scales

LatticeGPU

- ✤ HMC w/ NVIDIA GPUs
- \bullet 64⁴ lattices
- \clubsuit Aim: 0.05% precision

LatticeGPU

- \clubsuit HMC w/ NVIDIA GPUs
- \bullet 64⁴ lattices
- \clubsuit Aim: 0.05% precision
- Gradient Flow
 - ✤ Zeuthen flow
 - Improved observable $E^{\text{imp}} = \frac{4}{3}E^{\text{pl}} - \frac{1}{3}E^{\text{cl}}$
 - ✤ Adaptive step size integrator

LatticeGPU

- ✤ HMC w/ NVIDIA GPUs
- \bullet 64⁴ lattices
- \clubsuit Aim: 0.05% precision
- Gradient Flow
 - ✤ Zeuthen flow
 - Improved observable $E^{\text{imp}} = \frac{4}{3}E^{\text{pl}} - \frac{1}{3}E^{\text{cl}}$
 - ✤ Adaptive step size integrator

Wilson [Wilson 1975]							
$egin{array}{c} eta\ a \ ({ m fm})\ { m TL}{ m -i} \end{array}$	6.13 0.082 imp. LW	6.25 0.068 [M. Lus	6.35 0.059 cher and 1	6.42 0.053 P. Weisz 1	6.52 0.046 985]		
$egin{array}{c} eta\ a \ ({ m fm}) \end{array}$	4.59 0.080 Iwas	4.71 0.068 saki [Ito	4.83 0.058 h et al. 19	4.93 0.051 984]	5.0 0.047		
$egin{array}{c} eta \ a \ ({ m fm}) \end{array}$	2.79 0.079 DBW	2.91 0.067 2 [Forcra	3.0 0.059 and et al.	3.11 0.051 1997]	3.18 0.047		
$egin{array}{c} eta \ a \ ({ m fm}) \end{array}$	1.111 0.081	1.16 0.073	1.24 0.063	$\begin{array}{c} 1.35 \\ \textbf{0.051} \end{array}$	1.4 0.046		

LatticeGPU

- \clubsuit HMC w/ NVIDIA GPUs
- \bullet 64⁴ lattices
- $\clubsuit~$ Aim: 0.05% precision
- **Gradient Flow**
 - ✤ Zeuthen flow
 - Improved observable $E^{\text{imp}} = \frac{4}{3}E^{\text{pl}} - \frac{1}{3}E^{\text{cl}}$
 - ✤ Adaptive step size integrator

	W	ilson [W	Vilson 197	5]	
$egin{array}{c} eta\ ({ m fm})\ { m TL-i} \end{array}$	6.13 0.082 mp. LW	6.25 0.068 [M. Lus	6.35 0.059 cher and 1	6.42 0.053 P. Weisz 1	6.52 0.046 985]
$^{eta}_{a~({ m fm})}$	4.59 0.080 Iwas	4.71 0.068 saki [Ito	4.83 0.058 h et al. 19	4.93 0.051 984]	5.0 0.047
$\stackrel{eta}{a}(\mathrm{fm})$	2.79 0.079 DBW	2.91 0.067 2 [Forcra	3.0 0.059 and et al.	3.11 0.051 1997]	3.18 0.047
$egin{array}{c} eta \ a \ ({ m fm}) \end{array}$	1.111 0.081	1.16 0.073	$1.24 \\ 0.063$	$\begin{array}{c} 1.35 \\ 0.051 \end{array}$	1.4 0.046

$$\frac{t_0^{\text{imp}}}{t_1^{\text{imp}}} \stackrel{a \to 0}{\sim} \frac{t_0}{t_1} - a^2 t_0 \left\{ \frac{t_0}{t_1} \frac{G_0}{D_0} - \frac{G_1}{D_1} \right\}, \qquad G_0 = \langle E(t_0) S_{2,\text{G}} \rangle - \frac{c_b}{\text{d}t} \left\langle E(t) \right\rangle \Big|_{t_0}$$

Long-distance ratio t_0/t_1

 $t_1^2 \langle E(t_1) \rangle = 0.5$

Long-distance ratio t_0/t_1

 $t_1^2 \langle E(t_1) \rangle = 0.5$

Mostly consistent fits with a < 0.07 and a < 0.06

- ✤ but comparing actions is required to assess the scaling
- some discrepancies

Long-distance ratio t_0/t_1

 $t_1^2 \langle E(t_1) \rangle = 0.5$

Mostly consistent fits with a < 0.07 and a < 0.06

✤ but comparing actions is required to assess the scaling

- ✤ some discrepancies
- FV effects expected to be small NNLO in χ_{PT} for QCD [Bar and Golterman 2014] $\sqrt{8t_1}/L \sim 0.168$

Short-distance ratio t_0/t_2

Short scales \rightarrow larger cutoff effects

Short-distance ratio t_0/t_2

Short scales \rightarrow larger cutoff effects

Mostly consistent fits with a < 0.07 and a < 0.06

 \bullet linear regime (?) – quadratic fit does not improve results

Short-distance ratio t_0/t_2

- Short scales \rightarrow larger cutoff effects
- Mostly consistent fits with a < 0.07 and a < 0.06
 - ✤ linear regime (?) quadratic fit does not improve results
- Asymptotic prediction [Husung, Marquard, and Sommer 2020]

 $\langle O \rangle^{\rm latt} = \langle O \rangle + a^2 b^{\rm latt} \alpha (1/a)^\gamma, \qquad \qquad b^{\rm DBW2}/b^{\rm PL} = 16$

• c_b spoils the use of this condition as a scaling test

Topological charge

Flow quantities as good candidates for testing scaling properties

- Flow quantities as good candidates for testing scaling properties
 - classical a^2 -imp. of flow/observables necessary to remove irrelevant a^2 effects

- Flow quantities as good candidates for testing scaling properties
 - classical a^2 -imp. of flow/observables necessary to remove irrelevant a^2 effects
 - **-** Zeuthen flow & Improved observables

- Flow quantities as good candidates for testing scaling properties
 - classical a^2 -imp. of flow/observables necessary to remove irrelevant a^2 effects
 - ✤ Zeuthen flow & Improved observables
 - Comparing flow/observable discretization is misleading (e.g., comparing different valence discretizations)

- Flow quantities as good candidates for testing scaling properties
 - classical a^2 -imp. of flow/observables necessary to remove irrelevant a^2 effects
 - \clubsuit Zeuthen flow & Improved observables
 - Comparing flow/observable discretization is misleading (e.g., comparing different valence discretizations)
- Continuum extrapolations are hard
 - ✤ Tests to scaling & universality requires using different actions

- Flow quantities as good candidates for testing scaling properties
 - classical a^2 -imp. of flow/observables necessary to remove irrelevant a^2 effects
 - ✤ Zeuthen flow & Improved observables
 - Comparing flow/observable discretization is misleading (e.g., comparing different valence discretizations)
- Continuum extrapolations are hard
 - ✤ Tests to scaling & universality requires using different actions
- Different continuum limit between actions universality expected
 - ✤ Topology freezing? (large volumes!)

- Flow quantities as good candidates for testing scaling properties
 - classical a^2 -imp. of flow/observables necessary to remove irrelevant a^2 effects
 - \clubsuit Zeuthen flow & Improved observables
 - Comparing flow/observable discretization is misleading (e.g., comparing different valence discretizations)
- Continuum extrapolations are hard
 - ✤ Tests to scaling & universality requires using different actions
- Different continuum limit between actions universality expected
 - ✤ Topology freezing? (large volumes!) Simulations with OBC (ongoing)

- Flow quantities as good candidates for testing scaling properties
 - classical a^2 -imp. of flow/observables necessary to remove irrelevant a^2 effects
 - Zeuthen flow & Improved observables
 - Comparing flow/observable discretization is misleading (e.g., comparing different valence discretizations)
- Continuum extrapolations are hard
 - \checkmark Tests to scaling & universality requires using different actions
- Different continuum limit between actions universality expected
 - ✤ Topology freezing? (large volumes!) Simulations with OBC (ongoing)
 - Scaling region for g_0^2 ?

- Flow quantities as good candidates for testing scaling properties
 - classical a^2 -imp. of flow/observables necessary to remove irrelevant a^2 effects
 - Zeuthen flow & Improved observables
 - Comparing flow/observable discretization is misleading (e.g., comparing different valence discretizations)
- Continuum extrapolations are hard
 - \clubsuit Tests to scaling & universality requires using different actions
- Different continuum limit between actions universality expected
 - ✤ Topology freezing? (large volumes!) Simulations with OBC (ongoing)
 - Scaling region for g_0^2 ?
- Compare similar metrics for fermion actions
 - t_0/t_i using short & long distance scales
 - \bullet w_0/w_i less sensitive to c_b -term

1

19/18

 w_0 scales

w₀ scales [Borsányi et al. 2012]

unnusual definition

$$\left. t \frac{\mathrm{d}}{\mathrm{d}t} t^2 \left\langle E(t) \right\rangle \right|_{t=w_c^2} = \begin{cases} 0.095, & w_C \longrightarrow \text{ short distance} \\ 0.285, & w_A \longrightarrow \text{ medium distance} \\ 0.550, & w_B \longrightarrow \text{ long distance} \end{cases}$$

Ensembles

		Wilson	[Wilson 197	5]	
$ au_{ ext{int}}^{\hat{t}_0} onumber N_{ ext{ind}}$	1.1185 313 TL-imp	1.9820 270 . LW [м.	1.1224 459 Luscher and	1.3711 709 P. Weisz 198	0.8414 1142 _{5]}
$ au_{ ext{int}}^{\hat{t}_0} N_{ ext{ind}}$	0.5006 450	0.5003 720 Iwasaki	0.5001 3132 [Itoh et al. 19	$\begin{array}{c} 0.5000\\ 5448\\ _{284]} \end{array}$	$\begin{array}{c} 0.5000\\ 10904 \end{array}$
$ au_{ ext{int}}^{\hat{t}_0} N_{ ext{ind}}$	1.6590 283 D	4.9233 150 BW2 [Fo	1.7093 376 rcrand et al.	1.9361 1531 ^{1997]}	$\begin{array}{c} 1.0827\\ 1155 \end{array}$
$ au_{ ext{int}}^{\hat{t}_0} onumber N_{ ext{ind}}$	$\begin{array}{c} 0.7414 \\ 620 \end{array}$	$\begin{array}{c} 1.0516\\ 361 \end{array}$	$\frac{2.4447}{334}$	1.9192 888	3.6399 782