Chik Him (Ricky) Wong¹, Julius Kuti²

Determination $\alpha_S(m_Z)$

 $N_f = 0 \bmod el$

LATTICE 20:

Improvement

1

Updates on $N_f = 3$ QCD

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

On behalf of LatHC collaboration

1: University of Wuppertal 2: University of California, San Diego

Gradient Flow 2025

Chik Him (Ricky) Wong ¹, Julius Kuti ²

Determination of $\alpha_S(m_Z)$

 $N_f = 0 \text{ model}$

LATTICE 2022

Improvemen

Updates on $N_f = 3$

Determination of $\alpha_S(m_Z)$

- Goal: High precision determination of the strong coupling $\alpha_S(m_Z)$ at the Z-pole in QCD with massless $N_f = 3$ fermions.
- The determination of $\alpha_S(m_Z)$, equivalently $\mu^{-1}\Lambda_{\overline{MS}}$, requires integration of the inverse β -function from perturbative regime to the scale of hadron physics at strong coupling.

$$\mu^{-1} \cdot \Lambda_{\overline{MS}} = (b_0 \bar{g}^2)^{-b_1/2b_0^2}$$

$$\cdot \exp(-1/2b_0 \bar{g}^2) \cdot \exp\left(-\int_0^{\bar{g}} dx [1/\beta(x) + 1/b_0 x^3 - b_1/b_0^2 x]\right)$$

- The integration beyond the perturbative regime requires non-perturbative calculation of the β -function, which can be done on lattice
- On the lattice:
 - g^2 and β -function are not defined in \overline{MS} scheme, but it is not an issue as long as the conversion to $\Lambda_{\overline{MS}}$ is known
 - μ^{-1} is typically r_0 or $\sqrt{8t_0}$ where $\bar{g}^2 = g^2(\mu)$ is known

Chik Him (Ricky) Wong ¹, Julius Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

•

Results

Improvement

Updates on $N_f = 3$

Determination of $\alpha_S(m_Z)$

- Since 2017, we developed a variety of high-precision, gradient-flow based strategies utilizing β -function defined in infinite physical volume, applied in the sextet $N_f = 2$ model, fund $N_f = 10$ and fund $N_f = 12$ models.
- Our goal is to apply this method on $N_f = 3$ QCD. In Lattice 2022, we applied this to $N_f = 0$ and fund $N_f = 10$ as pilot studies.
- It turns out $N_f = 0$, supposedly the simplest case, is already challenging

Chik Him (Ricky) Wong ¹, Julius Kuti ²

Determination $\alpha_S(m_Z)$

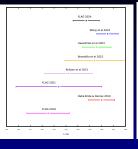
 $N_f = 0$ model

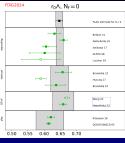
LATTICE 202 Results

Improvemen

Updates on $N_f = 3$ QCD

$N_f = 0$ model





- The FLAG 2019 world average summarizes studies prior to GF-based determinations
- The GF-based determination by Dalla Brida & Ramos 2019 significantly deviates from FLAG 2019 world average, creating tension with previous studies
- Our results, Wong et al 2023(PoS of Lattice 2022), agrees with Dalla Brida & Ramos 2019
- Hasenfratz et al 2023, using the same approach as us, got very consistent results with us and worsens the tension
- Other recent GF-based results also seem to have the same trend

Chik Him (Ricky) Wong ¹, Julius Kuti²

Determination $\alpha_S(m_Z)$

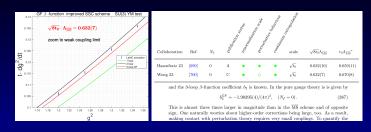
 $N_f = 0$ model

LATTICE 201

Improvement

Updates on $N_f = 3$ QCD

$N_f = 0$ model



- In Lattice 2022, we made contact at $\alpha_S \approx 0.095$ (i.e. $g_{PT}^2 = 4\pi\alpha_S \approx 1.2$) and got an error $\approx 1.4\%$
- FLAG 2024 criticizes that this introduces an uncontrolled systematic error and hence gave a lower rating
- This motivates us to improve our dataset and analysis. We conclude that it is not a significant effect
- In this talk, we discuss the progress on such investigation

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ mode

LATTICE 2022 Results

Improvement

Updates on $N_f = 3$

LATTICE 2022 Results

- Simulation details of $N_f = 0$:
 - Symanzik improved SU(3) gauge action in periodic boundary conditions
 - Heat-bath + over relaxation $(N_{\text{overrelax}} = 3)$
 - Only improved SSC scheme (definitions in [2203.15847]) is discussed

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

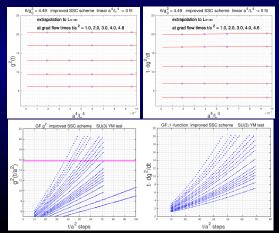
LATTICE 20:

Results

Updates on $N_f = 3$

LATTICE 2022 Results

- Methodology:
 - g²(t) is defined in infinite physical volume with Gradient Flow schemes at flow time t
 - $\beta(g^2(t)) = t \cdot dg^2(t)/dt$ is obtained
 - Infinite volume limit \Rightarrow Target $g^2 \Rightarrow$ Continuum limit
 - Scan g^2 values from weak to strong coupling regimes up to $g^2(t_0)$



Chik Him (Ricky) Wong¹, Julius Kuti²

Determination o $\alpha_S(m_Z)$

 $N_f = 0$ model

LATTICE 202

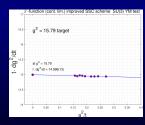
Improvemente

Updates on $N_f = 3$

LATTICE 2022 Results

Methodology:

- $g^2(t)$ is defined in infinite physical volume with Gradient Flow schemes at flow time t
- $\beta(g^2(t)) = t \cdot dg^2(t)/dt$ is obtained, approximated by 5-point stencil
- Infinite volume limit \Rightarrow Target $g^2 \Rightarrow$ Continuum limit
- Scan g^2 values from weak to strong coupling regimes up to $g^2(t_0)$



 $\begin{array}{c} \text{Chik Him (Ricky)} \\ \text{Wong}^{\,1}\,, \text{Julius} \\ \text{Kuti}^{\,2} \end{array}$

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

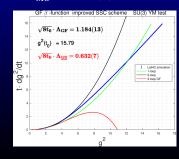
Results

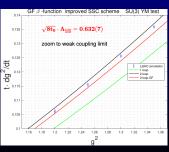
Improvement

Updates on $N_f = 3$ QCD

LATTICE 2022 Results

- Numerical data is not available for $g^2 < g_{PT}^2 = 1.2$
- Assume that β -function is well-described by the known 3-loop perturbative GF β -function($\beta_{\rm GF}^{3-{\rm loop}}$)[JHEP06(2016)161] at $g^2 < g_{\rm PT}^2$
- $\sqrt{8t_0} \Lambda_{GF}$ is obtained by :
 - Integrating $\beta_{GF}^{3-\text{loop}}$ from 0 to g_{PT}^2
 - Integrate a spline-fit using data between g_{PT}^2 and $g^2(t_0)$
- Convert Λ_{GF} into Λ_{MS} using the well known 1-loop calculation
- Convert $\sqrt{8t_0}$ into r_0 with $\sqrt{8t_0}/r_0 = 0.948(7)$ [JHEP08(2010)071],
- $r_0 \Lambda_{\overline{MS}} = 0.665(9)$ is obtained





 $\begin{array}{c} \text{Chik Him (Ricky)} \\ \text{Wong}^{\,1}\,, \text{Julius} \\ \text{Kuti}^{\,2} \end{array}$

Determination $\alpha_S(m_Z)$

 $N_f = 0$ model

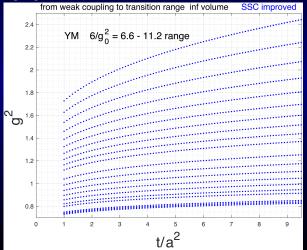
LATTICE 2022 Results

Improvement

Updates on $N_f = 3$

Improvements

- In this talk, we focus on the weak coupling regime $g^2 \le 1.8$
- We have improvements in both dataset and analysis
- The dataset extended by ≈ 20 more ensembles aiming at the weak coupling regime



 $\begin{array}{c} \text{Chik Him (Ricky)} \\ \text{Wong}^{\,1}\,, \text{Julius} \\ \text{Kuti}^{\,2} \end{array}$

Determination of $\alpha_S(m_Z)$

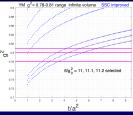
 $N_f = 0$ model

Improvements

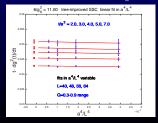
Updates on $N_f = 3$ OCD

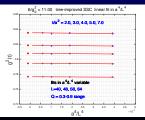
Improvements

• In the LAT 22 analysis, there are very few intersections between targeted g^2 and available data unless $6/g_0^2$ is sampled densely and carefully chosen in the right ranges



- \Rightarrow We modify our analysis as follows:
 - At each t/a^2 and $6/g_0^2$, take infinite volume limit of g^2 and β





 $\begin{array}{c} \text{Chik Him (Ricky)} \\ \text{Wong}^{\,1}\,, \text{Julius} \\ \text{Kuti}^{\,2} \end{array}$

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

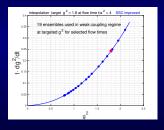
Results

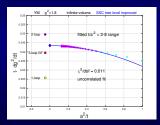
Improvements

Updates on $N_f = 3$

Improvements

- At each t/a^2 and $6/g_0^2$, take infinite volume limit of g^2 and β
- At each t/a^2 , for a set of target g^2 values, interpolate g^2 and β among $6/g_0^2$ values in infinite volume limit
- Take continuum limit of β at each targeted g^2 values





 $\begin{array}{c} \text{Chik Him (Ricky)} \\ \text{Wong}^1 \text{, Julius} \\ \text{Kuti}^2 \end{array}$

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

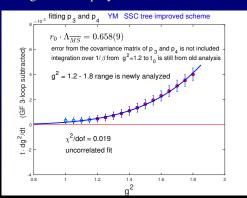
Results

Improvements

Updates on $N_f = 3$ OCD

Improvements

- At $g^2 = 1.2$, the difference between 2-loop and 3-loop perturbative β -functions is large and 4-loop is not available
- ⇒ Replacement with 3-loop perturbative β -function below g_{PT}^2 may introduce systematic errors coming from unknown higher-order contributions
- The effect can be put under control by fitting β a polynomial with p_3 and p_4 : $\beta(g^2) = g^4(b_0 + b_1 g^2 + b_2 g^4 + p_3 g^6 + p_4 g^8)$, then integrate using the fitted polynomial



Chik Him (Ricky) Wong ¹, Julius Kuti²

Determination $\alpha_S(m_Z)$

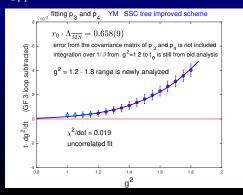
 $N_f = 0$ model

Improvements

Undates on N.

Results

- Result of replacing the three-loop β function with fitted polynomial within $g^2 = 0$ to 1.2 : $r_0 \cdot \Lambda_{\overline{MS}} = 0.658(9)$
- LATTICE 2022: $0.665(9) \leftarrow 1 \sigma$ difference
- The data at different g^2 are correlated. Correlation fits are required
- The consistency among different schemes, different fit ansatz and different orders of limits remains to be checked
- We will extend the modified analysis into the range $g^2 > 1.2$
- The limit $g_{\rm PT}^2 \to 0$ needs to be taken



Chik Him (Ricky) Wong ¹, Julius Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

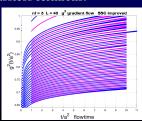
LATTICE 20

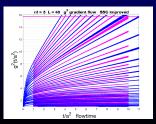
Improvemen

Updates on $N_f = 3$ OCD

Updates on $N_f = 3$ QCD

- We have generated much more ensembles with focus on the perturbative matching and on improved resolution at strong coupling
- Interpolation of g^2 at each L as a function of $6/g_0^2$ will increase the resolution
- Spline based χ^2 interpolation minimizes the model dependence of the interpolation
- Blue: data Magenta: interpolated
- Symanzik-improved gauge action with 4-step $\rho = 0.12$ stout-smeared staggered fermions in periodic boundary conditions for gauge links and anti-periodic boundary conditions for $N_f = 3$ massless fermions.





 $\begin{array}{c} \text{Chik Him (Ricky)} \\ \text{Wong}^{\,1}\,, \text{Julius} \\ \text{Kuti}^{\,2} \end{array}$

Determination of $\alpha_S(m_Z)$

 $N_f = 0 \text{ model}$

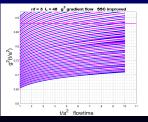
Results

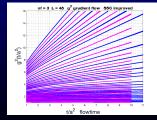
Improvemen

Updates on $N_f = 3$ OCD

Updates on $N_f = 3 \overline{QCD}$

- We have generated much more ensembles with focus on the perturbative matching
- Interpolation of g^2 at each L as a function of $6/g_0^2$ will increase the resolution
- Spline based χ^2 interpolation minimizes the model dependence of the interpolation
- Blue: data Magenta: interpolated
- Symanzik-improved gauge action with 4-step $\rho = 0.12$ stout-smeared staggered fermions in periodic boundary conditions for gauge links and anti-periodic boundary conditions for $N_f = 3$ massless fermions.





Chik Him (Ricky) Wong ¹, Julius Kuti ²

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

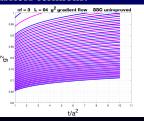
Results

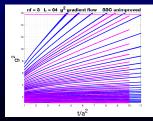
Improvemen

Updates on $N_f = 3$ OCD

Updates on $N_f = 3$ QCD

- We have generated much more ensembles with focus on the perturbative matching
- Interpolation of g^2 at each L as a function of $6/g_0^2$ will increase the resolution
- Spline based χ^2 interpolation minimizes the model dependence of the interpolation
- Blue: data Magenta: interpolated
- Symanzik-improved gauge action with 4-step $\rho = 0.12$ stout-smeared staggered fermions in periodic boundary conditions for gauge links and anti-periodic boundary conditions for $N_f = 3$ massless fermions.





Chik Him (Ricky)
Wong ¹, Julius
Kuti²

Determination $\alpha_S(m_Z)$

 $N_f = 0$ model

LATTICE 202

Improvement

Updates on $N_f = 3$ OCD

Updates on $N_f = 3$ QCD

- New analysis with improvements (ongoing): Take the continuum limit of $\ln(t_2/t_1) \equiv \int_{g^2(t_1)}^{g^2(t_2)} dg^2/\beta(g^2)$, where for each chosen $g^2(t_1)$ and $g^2(t_2)$:
 - At each L, within the range of corresponding t values, no systematic volume dependence is detectable below the noise level
 - \Rightarrow At each L, extrapolate $s^2 \equiv t_2/t_1$ to infinite volume limit with ansatz's: " s^2 =constant" and " s^2 linear in a^4/L^4 " with Akaike analysis

