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an and Perturbation Theory

e Lagrangian defines our theory, e.g., the Standard Model

Lsy = —%FWFW + (i Py + h.c.) + (iyybd + h.c.) + |Dug|> — V()

e From it we can calculate observables, e.g., cross sections
2
o= /dl_lps\M|

where [dlps is an integral over phase space and M the amplitude of the process
e Exact solution only known for toy theories
e Instead:
e Perturbation theory: expand in small parameters, e.g., in the electromagnetic coupling
constant g.:

/\/t:/Vlo-ﬁ-ggf\/ll-l-gj./\/lz-f—..v7
oc=0g0+glo1tgiort...

e Discretize space-time on a lattice and run numerical simulation: mainly applicable to low
energies 1



Feynman Rules and Feynman Diagrams
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e |llustrative and practical method: Feynman diagrams
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e Straightforward counting of perturbative order in g. through vertices 2



Tree-Level Amplitude

Let's consider the process v(q) — e~ (p1)et(p2)

Leading diagram:
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e Kinematics: momentum conservation g = p; + p and scale § = %

e Insert Feynman rules into diagram:
M = €,(q)a(p2)[ " u(pr),
M =gy
e Polarization of external photon €,(q) and spinors of external electron u(p;) and positron

ii(p,) dealt with when squaring amplitude |M|?
= Ignore them for amplitude and only look at "



One-Loop Amplitude

e Again one diagram

e Inserting Feynman rules:

dPk i(p, + k+m) i(p, + k+m) —ig
[#(8) = o H1 2 o “ 1 . 2 H1p2
©) = [ Gryst-ien) P e RS (i)
where D = 4 — 2¢ to regulate divergencies
e This looks intimidating . ..
dPk
(2m)P
e Tensor integral with index u

e Loop integral [

e Non-trivial matrix in Dirac space



Tensor Decomposition (1)

e Properties and symmetries of process allow us to write general expression

M(8) = R — 2 Fa(S)o™q,  with o™ = S[y%,"]
m

valid at all loop orders
e " and o"”q, form complete basis and all other structures linearly combinations of the two
e [1(5) and F»(5) called form factors which are scalar functions of kinematic scale §
e Side remark: (5 = 0)£ng2
e We have seen at leading order f(5) =1 and F»(5) =0
e Can be obtained by applying projectors to amplitude:

Pill ] = Te[P7(p, + m)Tu(p, — m)]

where P chosen such that
Pi[ru] = Fi(§)



Tensor Decomposition (1)

e Applying the projectors we find

Fl(l)(g):C%/(O 1,1) + ¢2/(—1,1,1) + nine more terms,
Fz(l)(§):C21/(0 1,1) 4 c21(—1,1,1) + nine more terms
where, e.g.,
ci(8) =2 ((D*—10D +16) 5+ 4(D — 4))
are rational functions and

_ D !
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are scalar Feynman integrals

= Tensor structures dealt with



Integration-by-Parts Relations

e Chetyrkin and Tkachov noticed

N
Ok+ P P32 P N
with £ an arbitrary momentum [Tkachov 1981; Chetyrkin, Tkachov 1981]
e Proof: GauB's law

e But the derivative can also be applied explicitly, for our example:
0= (D —2a; —a, — a3)l(a1,az,a3) —a1l(a1 — L,ap + 1,a3) — axl(a1 — 1,a0,83 + 1)

= Linear relations between different integrals!

e Exploiting relations allows us to express all integrals through a finite (and small) number
of master integrals



Reduced Expressions

e Exploiting the relations, only two integrals remain:
AP () = &(9)/(0,1,0) + &(9)/(0, 1,1),
FE)(8) = 8(9)/(0,1,0) + B(8)/(0,1,1)

4(D —2) (D*(§+4) + D (8% — 55 — 28) — 282 + 45 + 40)
(D —4)(D —3)(5—4)

are now more complicated
e In the end interested only in result in four dimensions, not D = 4 — 2¢

= Expand in ¢:

y 18(82—4) 8(35+8) 8(52—5—14)
lray _ * _
Cl(s)_e— §—4 i4 T -4

e Only have to solve the two integrals /(0,1,0) and /(0,1,1) now




Differential Equations

e Take derivative of master integrals w.r.t. §:

e Can reduce r.h.s. to master integrals again:

d
—1(0,1,0) =
d§(7 70) 07

d 2 — €5 -2+ 2¢
—1(0,1,1) = 1(0,1,1

= System of ordinary differential equations

1(0,1,0)



Solution of the Differential Equations

d

—1(0,1,0) =0

d§(77) ?

d 2 — €5 -2+ 2¢
—1(0,1,1) = ———1/(0,1,1 1(0,1,0
d§(77) (§_4)§(7)+(§_4)§(77)

e Solution can be obtained order-by-order as a Laurent expansion in € after fixing boundaries:

2

1(0,1,0) = % 14te (1 - ;) +0O(e),

1 1+ x 72(1 + 3x) 14+x
10,1,1) = = + 2+ — 2 H(0,x) + e[ 4 — 2= XH(o
0.1 =1+ 24 1 0H00) + ¢4 a2 1 21 k0.

1 1
1 - iH(—laX)H(O»X) L

=2

(H(0, x))? + 221X

—x) 1_XH(O,—l,X)) + O(€?)

where
2+V5—4/5-3
X =
2
and H(...,x) are multiple polylogarithms [Remiddi, Vermaseren 1999]
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Final Results

g [1(2(A+D)HO.x) )\ . (E+1)H(Ox)?
o )+

1
(4m)2 e\ (x —1)(x+1) (x—1)(x+1)

3X2—|—2x—|—3) H(0, x) 4(x2+1) H(—1,x)H(0, x) 4(x2+1) H(0, -1, x)
(x—1)(x+1) (x —1)(x+1) (x—1)(x+1)

. 72 (—x% — 1)
3(x — 1)(x +1)
e2 4x 4

o G0 + 009 + ot

e Poles in e cancel against poles from renormalization and infrared subtraction

F(8) =1+
(

—4+ 0(6)} +0(gd),

F2(8) = 0+

e Can evaluate numerically:

2
A ~ ge } _ 4
Fi(§=23)~1+ )y {62.522 3.349 + (9(6)} +0(gh),

. ~ g
F(§=23)~0+ (an) {3‘482 + O(E):| +0(g)

= Ready to be plugged into Monte Carlo codes like McMule 1



Summary of How to Calculate Multiloop Amplitudes

1. Generate all diagrams
e Almost trivial with automated codes

2. Rewrite amplitude in terms of scalar Feynman integrals
e Usually straightforward and cheap, but not always

3. Reduce scalar integrals to master integrals

e No principle problem, but can be computationally expensive or even prohibitive

N

. Solve master integrals
e Many different methods
e Numerical methods in principle always applicable, but can be computationally expensive or
even prohibitive
e Analytic solutions of state-of-the-art problems usually not straightforward and might result
in new function classes that are on the forefront of math research

= Automated and efficient tools necessary for higher orders
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