

Status of the n2EDM experiment (2024)

Thomas Lefort on behalf of the nEDM collaboration

The n2EDM experiment design

From the measurement of two frequencies (parallel and antiparallel fields configurations)

$$d_n = \frac{\pi h}{2|E|}(f_{n,\uparrow\downarrow} - f_{n,\uparrow\uparrow}) \rightarrow \text{Ramsey's method: required polarized neutrons}$$

Two main challenges neutron statistic & magnetic field uniformity and stability

2023: short reminder

First UCN in the fully assembled apparatusNeutron frequency measured (Ramsey's method)

UCN statistic: 10,000 per chamber (factor 6 below design goal)

Missing crucial subsystems:

- Magnetometry (Hg, Cs): still under development
- HV: bipolar power supply failed (no electric field) !

2024 goal: first nEDM measurement

n2EDM

Online monitoring of the magnetic field drift in the chambers: mandatory for nEDM measurement ($R = f_n/f_{Hg}$)

Hg co-magnetomer operational over weeks:

 T_2 (TOP) = 50 s ; T_2 (BOT) = 80 s

Performance still be improved but nearly at the design goal sensitivity (factor ~ 4 missing)

Operational for nEDM measurement (but sensitivity to improve)

Electric field generation: mandatory for nEDM measurement

Bipolar power supply replaced by two unipolar supplies (300 kV) Full setup tested for the first time in 2024

Performance:

Stable (sparkless) operation at 150 kV (E= 12.5 kV/cm) : ready for data taking ! Up to 180 kV (design goal) but sparkling (conditioning procedure to improve)

Polarity switcher needed: development started in 2024 Commissioning during 2025 shutdown

Goal: remote control of polarity changes (switcher) ready before restart of data taking

Online monitoring of field non uniformities (G₃₀): systematic assessment

Two Cs units installed in 2024: steady operation over weeks

Four systems (UCN + Hg + Cs + HV) simultaneously operating: \rightarrow test-EDM run can be performed (~1 day)

Average magnetic field sampled by neutron, Hg and Cs over a run (~ 1 day):

- high stability observed by the three magnetometers
- neutron in agreement with Hg
- Cs offset due to incomplete array (under investigations)

UCN statistic (2024)

Lot of efforts to improve our storage capability:

- Two culprits (2023): coatings of electrodes (DLC) & insulator ring (DPS)

Test of a new UCN storage chamber:

- new insulator rings (quartz instead of Rexolite)
- test electrodes: higher surface quality (polishing) + DLC

UCN transport: + 40% with new UCN guides

Uncoated quartz ring + test electrodes + new guides 42,000 in the test chamber (x4 / 2023)

UCN statistic in 2025-2026

Manufacturing (x2) in 2025

Manufacturing of new electrodes: (improved) design done

- goal: ready for summer

Uncoated quartz ring + new DLC coated electrodes 84,000 for two chambers (66 % of design goal)

Still room for improvements in 2025:

- Insulator ring: coating with deuterated paraffin ($V_F = 90 \text{ neV} \rightarrow 160 \text{ neV}$) ongoing development (ready in 2025 ?)

- A few new UCN guides towards detectors

Still a lot of work before restart of data taking

Field mapping during winter: field reproducibility (offline corrections of systematic effects)

Implementation of the blinding procedure: directly in the DAQ system

Installation of half of the Cs array (56 cells): online assessment of higher order gradients

Improvements of the Hg co-magnetometer sensitivity: ongoing study

Substantial effort to get a magnetically clean environment: Small pieces scanned with PSI gradiometer (cleaned or replaced) Large pieces (i.e. electrodes): scanned at PTB (cleaned)

and many others tasks ...

Current n2EDM sensitivity

Experiment sensitivity $\sigma(d_n)$

Components	nEDM (2016)	n2EDM (2024)	Design goal
Precession time (T)	180 s	180 s	180 s
Neutrons statistic (N)	15,000	64,000 *	120,000
High Voltage (E)	\pm 11 KV/cm	\pm 12.5 KV/cm	\pm 15 KV/cm
Polarisation (α)	0.75	0.82 - 0.85	0.80
Daily sensitivity (σ)	11. 10 ⁻²⁶ ecm	4.5 10 ⁻²⁶ ecm	2.6 10 ⁻²⁶ ecm

* Former electrodes

Room for improvement: UCN statistic (ring coating) + High Voltage (conditioning) \rightarrow towards the design goal sensitivity

2025: first measurement in the 10⁻²⁷ e cm range ?

Current sensitivity: improved by a factor 2.4 / nEDM experiment ~ 30 days required to reach previous experiment sensitivity

n2EDM sensitivity

Current sensitivity $\sigma(d_n)$

$$\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

Components	nEDM (2016)	n2EDM (2024)	Design goal	
Precession time (T)	180 s	180 s	180 s	
Neutrons statistic (N)	15,000	60,000	120,000	
High Voltage (E)	\pm 11 KV/cm	\pm 12.5 KV/cm	\pm 15 KV/cm	
Polarisation (α)	0.75	0.82 - 0.85	0.80	
Daily sensitivity (σ)	11. 10 ⁻²⁶ ecm	5. 10 ⁻²⁶ ecm	2.6 10 ⁻²⁶ ecm	

Current sensitivity:

- improved by a factor 2 / nEDM experiment
- missing a factor 2 / design goal

With current sensitivity:

15 to 30 days required to reach previous experiment sensitivity

Magnetometry:

Components	2024	Design goal	
Hg Comagnetometer	T ₂ = 50 - 70 s	T ₂ = 100 s	
Cs magnetometers	8 cells	112 cells	
Magnetic field [1]	$\sigma(B_z) = 35 \text{ pT}$	$\sigma(B_z) = 170 \text{ pT}$	

Room for improvement: UCN statistic (ring coating) + High Voltage (conditioning)

[1] "Generating a highly uniform magnetic field inside the magnetically shielded room of the n2EDM experiment" accepted in EPJC (2025)

Super Conducting Magnet (SCM) scan:

UCN polarized up to a given energy E_{max} (a given SCM field strength)

- Polarized UCN: $E < E_{max}$; unpolarized UCN: $E > E_{max}$

UCN polarization measured at the end of the storage period

- low polarization \rightarrow high energy (unpolarized) UCN are stored
- large polarization \rightarrow high energy (unpolarized) UCN are lost during storage

 E_{max} is a measurement of the lowest Fermi potential in the chambers

Results confirm that coating of electrodes and rings were not performant

Depolarization rate depends on:

- UCN energy spectrum & field non uniformities

$$\alpha(T) = \alpha_0 \int n(\epsilon) \exp\left(-\frac{T}{T_{2,\max}(\epsilon)}\right) d\epsilon,$$

Method:

apply different field gradients and measure UCN polarization Depolarization give access to UCN energy spectrum

Magnetic field commissioning

Magnetic field characterization (2021-2022): close collaboration between LPC and LPSC

- internal coils system simulated, built and installed by LPC
- field characterization performed by LPSC

	Required	w/o optim.	w/ optim.
Statistical requirements			
Vertical uniformity $\sigma(B_z)$ (pT)	< 170	49.1 ± 1.5	34.7 ± 1.5
Systematical requirements			
$d_{n \leftarrow Hg}^{\text{false}}(\hat{G}_{30}\hat{H}_{30}) (10^{-28} e \text{cm})$	< 3	81.7 ± 2.9	2.3 ± 2.9
$d_{n \leftarrow Hg}^{\text{false}}(\acute{G}_{50}\acute{H}_{50}) (10^{-28} e \mathrm{cm})$	< 3	9.2 ± 0.7	0.7 ± 0.7
$d_{n \leftarrow Hg}^{\text{false}}(\acute{G}_{70}\acute{H}_{70}) (10^{-28} e \text{cm})$	< 3	0.3 ± 0.1	0.2 ± 0.1

Performances are excellent

Part of the systematics already below requirements