MUSE Progress Report

Steffen Strauch University of South Carolina for the MUSE Collaboration

(Argonne National Laboratory, George Washington University, Hampton University, Hebrew University of Jerusalem, Montgomery College, MIT, New Mexico State University, Paul Scherrer Institute, Rutgers The State University of New Jersey, Stony Brook University, Tel Aviv University, Temple University University of South Carolina)

Supported in parts by the U.S. National Science Foundation: NSF PHY-2412777 (USC). The MUSE experiment is supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Paul Scherrer Institute, and the US-Israel Binational Science Foundation.

Open CHRISP Users Meeting BVR56, PSI, February 11, 2025

Measuring the proton charge radius

Lepton scattering experiments

R. Hofstadter, Rev. Mod. Phys. **28**, 214 (1956)

$$\langle r^2 \rangle = -6\hbar^2 \frac{dG_E(Q^2)}{dQ^2} \Big|_{Q^2=0}$$

Spectroscopy

 μ beam stopped in H₂ gas

 $\Delta E = \Delta E(\langle r^2 \rangle)$

MUSE and The Proton-Radius Puzzle

- CODATA'14 (2015)
- CODATA'18 (2021)
 - Pohl (2010)
 - Antognini (2013)
- Bernauer [A1] (2010)
 - Zhan (2011)
- Xiong [PRad] (2019)
 - Mihovilovic (2021)
 - Beyer (2017)
 - Fleurbaey (2018)
 - Bezginov (2019)
 - Grinin (2020)
 - Brandt (2022)
 - **Projected MUSE**

Possible explanations of the proton charge-radius puzzle:

- Experimental issues
- Radiative Correction Effects
- Two Photon Exchange (TPE) / Polarizability
- Physics Beyond Standard Model (Violation of Lepton Universality)

Inconsistent electron-scattering data Inconsistent hydrogen-spectroscopy data

MUSE

$$e^{\pm}p \rightarrow e^{\pm}p$$

 $\mu^{\pm}p \rightarrow \mu^{\pm}p$

MUSE is only low-Q² scattering experiment using e^{\pm} and μ^{\pm} beams

Figure from W. Xiong and C. Peng, "Proton Electric Charge Radius from Lepton Scattering," Universe 9, no.4, 182 (2023), doi:10.3390/universe9040182, [arXiv:2302.13818 [nucl-ex]].

Beam	e-	e +	μ-	μ+	
Mainz 2010	\checkmark				C
PRad	\checkmark				pl
Mainz ISR	\checkmark				
Mainz Jet	\checkmark				
MUSE PSI	\checkmark	\checkmark	\checkmark	\checkmark	or
ULQ2 ELPH	\checkmark				
AMBER CERN			\checkmark	\checkmark	fu
MAGIX MESA	\checkmark				
PRES MAMI	\checkmark				
PRad-II JLab	\checkmark				

high-energy / small-angle experiments

ometed

MUSE at the secondary beam line π M1 at PSI

Beam

- 50 MHz RF (20 ns bunch separation)
- e, μ , π beams with large emittance
- Momenta: 115, 160, 210 MeV/c

Beam line detectors

Scattered particle detectors

The MUon Scattering Experiment at PSI (MUSE), MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det] E. Cline et al. (MUSE Collaboration), Phys. Rev. C 105 (2022) 5, 055201.

The Target Chamber Post Veto detectors help reducing the trigger rate from background events

GEM tracked 210 MeV/c beam particles that trigger the DAQ readout

The **in-chamber** readout of the SiPM detectors was first employed during the 2024 beam time and resulted in superior data quality compared to the optical fibers readout.

MUSE data analysis is blinded: Tracked particles are suppressed in the analysis chain

Differently encrypted for data 36 groups $(e, \mu, \pi) \times (+, -) \times (115, 160, 210 \text{ MeV/c}) \times (data, MC)$ Effect of blinding can be larger or smaller than one for ratios, e.g., x(data) / x(MC) J. C. Bernauer, et al. (MUSE Collaboration), submitted to PRC, arXiv:2310.11469 [physics.data-an] (2023)

Suppress track with track angle θ_{out} if $20 \% \left(A_i + 0.3 \cos B_i \theta_{out}\right) \left(1 - \frac{1}{3} \theta_{out}\right) > R,$

where $0 \le R \le 1$ is a uniformly distributed variable chosen pseudorandomly for each event, and $0.25 \le A_i \le 1, 3 \le B_i \le 10, i = 1, ..., 36.$

 \Rightarrow minimally biased analysis

Detector calibrations are unaffected by blinding Examples of preliminary results

-10

0

10

20

30

_eft/Right asymmetry +160 MeV/c SPSLF $(\times 10^5)$ SPSRF Counts 5 10 SPS Front Wall Bar 350Tracking and geometry tests +160 MeV/c 300 µ left side Target y = -8 mm250µ right side -210 MeV/c Target y = +16 mm $\underset{150}{\overset{200}{\text{study}}}$ 100 -150-100-50-250-300-2000 Interaction Vertex z (mm)

Surveyed detector positions are not yet fully included in the analysis and lead to offsets in the reconstructed tracks.

Order and time-frame of tests prior to unblinding our primary lepton scattering physics

Order	Tests of data quality, MC, and analysis techniques	Blinding	Yea
1.1	Stability and direct comparison of basic scintillator and calorimeter responses with MC simulations	blinded	2026
1.2	Efficient and precise track reconstruction (GEM-STT straight through tracks, and scattering vertices using rod and production targets)	blinded	2026
1.3	Verification of physics model, geometry, beam characteristics, and trigger digitization in the MC	blinded	2026
2	 Verify φ independence: direct comparison of quantities using left and right sides of the experiment up and down halves of the experiment 	blinded	2027
3	Verify results indepent of analysis procedures and cuts	blinded	2027
4	Determination of pion -scattering cross sections	π-data unblinded	2027
5	Determination of muon -decay distributions	µ-data unblinded	2027

Expected uncertainties of MUSE proton charge-radius extraction

Blinded, preliminary analysis of 2023 μ [±]p scattering data

What is the radius?

Absolute values of extracted e/µ radii (assuming no +/- difference seen):

 $\sigma(r_{\rm e}), \sigma(r_{\mu}) \approx 0.008 \text{ fm}$

Are the r_e and r_μ radii different?

The most sensitive test is a direct comparison of $G_E(Q^2)$ from ep and μp scattering.

Comparisons of $e to \mu$ or of **positive to negative** data are insensitive to many of the systematics.

11

Dispersively improved chiral effective field theory shows sensitivity of the µp cross section to the proton charge radius

 $d\sigma / d\sigma_{SD}$

- A 0.01 fm change in radius corresponds to about 0.9 % change in cross section.
- Good control of systematic uncertainties is required to achieve the goal of the experiment.
- Radiative corrections are the largest contributor to systematic uncertainties in MUSE.

 $\mu p \rightarrow \mu p$

$ep \rightarrow e'p\gamma$ and $\mu p \rightarrow \mu'p\gamma$ cross sections in MUSE kinematics—study of radiative corrections

64 lead-glass crystals (4 cm x 4 cm x 30 cm)

L. Li et al. (MUSE Collaboration), Eur. Phys. J. A 60:8 (2024)

$$\sigma^{\pm} = \sigma_{1\gamma} (1 \pm \delta_{2\gamma})$$
$$\frac{\sigma^{+}}{\sigma^{-}} \approx 1 + 2\delta_{2\gamma}$$

Beam-time Request and Outlook

MUSE requests 6 months of beam time in 2025 at PiM1.

radius puzzle:

- Year **Events** With the 2025 beam time, MUSE will achieve its statistics goals to provide valuable insights into the proton charge 3×10^{9} 2023 2024 6×10^{9} the comparison between ep and µp (cross section, form factor, radius) will be a direct test for lepton-2025 6×10^{9} universality violation and any related new physics; anticipated ep and µp comparison and the photon calorimeter 15×10^{9} Goal can test radiative corrections;
- - the use of both positive and negative polarities allows the study of two-photon exchange mechanisms.

15