

Diamond Anvil Measurement of Muon-Catalyzed Fusion Kinetics

The MuFusE Collaboration PSI BVR 56 Progress Report

February 11, 2025 Ara Knaian

Introduction

Fusion is a safe, abundant source of clean energy

Fusion of the deuterium in a stream of tap water could power a city.

Plasma fusion requires stable 100,000,000 °C plasma

The deuterium-tritium fusion reaction has the highest cross section.

A cutaway view of the ITER tokamak, scheduled to burn DT in 2039.

Muon forms chemical bond between Deuterium atom and Tritium atom

Energetic

Energetic neutron

alpha

Sometimes muon sticks to the alpha particle product of the fusion **Motivation**

revenue from heat sales.)

Cost of electricity versus physics parameters

Cost of baseload power by source, \$/kWh (1)

Coal	\$0.089
Biomass	\$0.077
Nuclear fission	\$0.071
Gas:	\$0.043

Target operating point:

Fusion (?): \$0.025

(1) Levelized Costs of New Generation Resources in the Annual Energy Outlook 2023, US Energy Information Administration, Document #AE02023 Background

Fusion rate increases with temperature and density

Experimental Data from JINR measurements on DT Ref: V.R. Bom et. al, JETP, 2005

Background

Sticking may decrease with density

- Both experiment and theory predict that sticking decreases with density.
- Data from four experimental groups is shown.
- At high density, the measured sticking is uniformly lower (better) than predicted by theory
- Density is stated as a fraction of liquid hydrogen atomic number density.

MuFusE — Muon-Catalyzed Fusion Experiment

Goals of our collaboration:

1. Measure DT cycling rate and sticking fraction at high density and temperature

2.Create open-source physics process models for GEANT4

End-to-end simulation: sticking fraction vs cell size

Measured spectra and rates align with simulation

Neutron detection between the muon and electron

Materials and Methods

Loading the tritium into the U-beds

Materials and Methods

Loading the cell with liquid DT

Materials and Methods

Compression of the liquid DT to a solid

Optical pressure measurement via ruby fluorescence

Real-time gas analysis via Raman spectroscopy

Pressure and temperature reached

Diamond anvil cell

Hits classified as fusion neutrons peak at 46 MeV/c muon momentum, matching simulation

Time spectrum of hits classified as fusion neutrons

60/40 solid DT, 50K, at 2.2 LHD

Empty target

Snapshot of a typical DT fusion event

PRELIMINARY data on DT cycling rate to 2.2 LHD (2024)

2025 Timeline and Beam Request

A. Adamczak^o, J.A. Allen^a, A. Antognini^{c,m}, E. G. Badaracco^{d,i}, J. Betances^{a,n}, N.J. Brennan^a, R. Chaney^a, W. Cutler^{f,j}, J. Davies^e, C. Fagan^p, C. Forrest^e, A P. Gandhi^d, V. Glebov^e, A. Golossanov^{c,f}, D.M. Harrington^a, G. Harris^f, J.T. Hinchen^a, P.A. Holden^a, C. Izzo^d, C. Johnstone^d, J.D. Kalow^a, K. Kem^a, M. Khandaker^a, M. Kiburg^d, I. Kiniti^{a,n}, A.N. Knaian^{a,c,d,f,2}, L.E. Knaian^f, E. Koukina^f, K. Lau^a, J. Larson^k, K.R. Lynch^{b,d,2}, N.A. MacFadden^{a,g}, A. Mazzacane^d, P.A. McDaniel^a, M. Mundt^{a,j}, S.O. Newburg^{a,f}, E. Niner, K. Payne^a, C.C. Petitjean^c, R. Ridgeway^d, A. Sampat^a, C.R. Shmayda^q, W.T. Shmayda^{e,1}, W. Stadolnik^{a,j}, I.D. Spool^a, S. Tripathy^{b,d}, S. Varner^a, D. Zajac^{a,j}

