Measurement of Charge Radii from Lithium to Neon

Nancy Paul For the QUARTET collaboration Open CHRISP users meeting BVR-56, 11.2.2025

The QUARTET collaboration and precision goals

Why does it work?

Muonic atoms are highly sensitive to nuclear properties

Muonic atoms in a nutshell

Regular hydrogen:

Muonic hydrogen:

Bohr radius ~ 50'000 x nuclear radius

Bohrradius

electron

Muon mass = 200 * electron mass Bohr radius = 1/200 of H

200³ = a ten million times more sensitive to nuclear size & structure

==> Our laser spectroscopy at 10⁻⁵ level can compete with 10⁻¹² from normal atoms

muon

Randolf Pohl's talk from Monday..

New quantum sensing microcalorimeter detectors 50X gain in intrinsic resolution for x rays

What are radii good for?

- Absolute radius: Li/Be/B \rightarrow calibrate entire chains, test nuclear chiral EFT
- Absolute radii for He-like laser spectroscopy Li to C (Wuhan, Darmstadt, Mainz, MPQ).
- Isotope shifts: compare electronic and muonic atoms to search for new lepton-neutron interactions
- Novel measurements of g-factors in H-like ions limited by muonic isotope shifts for new physics searches.

The QUARTET experimental setup—2024

The QUARTET experimental setup—2024

(View from below)

The QUARTET experimental setup—2024

Muon beam and 2024 targets

Many thanks to Dieter Ries and the PSI neutron group !

^{nat}B, ¹⁰B (obtained from PSI)

Calibration—combination of XRF and gamma-ray standards

The QUARTET detector

- 64 pixel maX-30 MMC detector, developed for IAXO experiment
- Mounted in custom sidearm designed to reduce vibrations
- 5 thermal shields and x-ray windows
- Calibration sources mounted outside the detector

The QUARTET detector

- 64 pixel maX-30 MMC detector, developed for IAXO experiment
- Mounted in custom sidearm designed to reduce vibrations
- 5 thermal shields and x-ray windows
- Calibration sources mounted outside the detector

QUARTET 2024 beamtime—high statistics data for all channels of interest

High statistics data suitable for physics analysis obtained for all main channels of interest

QUARTET 2024 beamtime—Key analysis steps

QUARTET 2024 beamtime—Promising first spectra

- ✓ High quality spectra for all main channels of interest
- ✓ Muon coincidence allows to separate muonic atom lines from calibration lines
- ✓ Main steps of spectral treatment and calibration have been accomplished for all channels.
- ✓ Statistics allow <1 eV centroid determination

QUARTET 2024 beamtime—Promising first spectra, physics analysis ongoing

✓ Fitting of the isotope shifts with hyperfine structure in B and Li, in collaboration with nuclear and atomic theorists

✓ Article submissions for isotope shift measurements with ~1eV accuracies (or better) expected in 2025.

QUARTET 2025—Onwards and Upwards (in energy) !

- First data sets obtained for Li, Be, B.
 Publication quality for first improvements in existing radii.
- 2025 goals :
 - □ ^{12,13}C (tests already done in 2023)
 - □ ¹⁴N
 - **1**^{6,18}**0**
 - \rightarrow Better, optimized MMC detector
 - →New ADC with reduced non-linearity (Development with Struck)

New, optimized high-energy MMC detector for QUARTET

- New, optimized MMC pixel design for QUARTET developed by KIP
- Dedicated channels for electron vetoes (asymmetric pixels)
- Faster heat sinks→higher rates

- 100 micrometer thick x-ray absorbers made of electroplated gold
- New fabrication process, used for QUARTET and GSI detectors (maXs-100)
- High quantum efficiency for 100 keV x rays

2025 Goals and Summary

Request: 2.5 weeks in PiE1

- Setup—4 days
- ^{12,13}C—5 days
- ¹⁴N—3 days
- ^{16,18}O—5 days
- Tear down—1 day

- ✓ First physics results for Li, B, and B expected in 2025
- ✓ Factors of 3-5 improvement in radii expected from 2024 data, still factors 2-3 from nuclear theory limits
 - ✓ Improved, faster MMCs optimized for QUARTET to be deployed in 2025

Thank you for your attention and consideration

Determinations of nuclear RMS charge radii

• For Z < 3:

Laser spectroscopy of muonic atoms, limited by nuclear theory

• For Z > 6:

Measured x-rays from muonic atoms using solid-state detectors.

10<Z: limited by theory.

Z<10: limited by experiment (resolution).

• For Z = 3 - 5, and others:

Electron scattering, less accurate and systematics usually NOT under control

• For **Z** = 6

E(2P-1S)~75 keV, measured with crystal spectrometer. Limited by resolution ~75 eV

