Nuclear Structure and Decay Data Evaluations

Sofia University 'St.Kl.Ohridski'

APRENDE Project

Background

- NuPECC LRP'2024 observation: The absence of a coordinated nuclear data effort in Europe, in conjunction with limited funding, has resulted in a shortage of expert data evaluators with serious repercussions for the international databases. Over the past two decades, Europe's contribution to ENSDF has dwindled to less than 20% of the overall. This figure is notably low considering the substantial volume of experimental data generated by the European nuclear physics facilities. Combined with a global decline in the ENSDF effort worldwide, the cumulative ENSDF evaluation effort is no longer adequate to keep the database up to date within a 10-year cycle. To maintain a regular 10-year update cycle, a minimum of 12 full-time evaluators is required, whereas the current global effort amounts to just 5. What this situation implies is that the new, accurate, and precise experimental data generated by state-of-the-art European nuclear physics facilities will not be promptly incorporated into the databases, thus delaying their utilisation in various applications.
- NuPECC recommendation: Dedicated efforts to train the next generation of nuclear data experts in data evaluation and the use of AI/ML methods and modern data-driven technologies are supported.
- Pre-APRENDE status: 0.2 FTE dedicated to data evaluation in Sofia University is an NSDD member since 2017; Similar numbers in ATOMKI and IFIN-HH the three EU NSDD centres
- APRENDE Scope (Task 4.1. Decay data evaluations and education)
 - To train a new a evaluator (Sofia Uni) one scientist recruited to 0.5 FTE; Training on A=117 and XUNDL already started
 - To deliver two mass-chain evaluations (A=106, 111)
- APRENDE Effort
 - Sofia University: 24.4 PM
 - IFIN-HH: 3.8 PM
 - ATOMKI: 4.5 PM
- APRENDE Context (ATOMKI, IFIN-HH, SofiaUni are the EU members of the Nuclear Structure and Decay Data Network that maintains the ENSDF)
 - Effort to attract more people in Bulgaria (National Program *Enhancing the qualification in the fields of Nuclear Technology and Nuclear Engineering*) and Romania (post-doc)

Nuclear Structure and Decay Data **Evaluation** activities

🛯 🔇 🖘 🕻 Nuc	il Atomic Energy Agency Iear Data Services (歌祖,既主金机构	KEAorg I NDS Masio Search	n Mirrors: India China Russia Go
Scientific Secretary Paraskevi (Vivian) Dimitriou (IAEA)	INDEL Nublet LiveChart NSR Nuclear Walter Cards Related + ENSDF Menado Codes Nuclear Dail	ISBNER EXTOR	NSDD Network About Status of NSDD network List of NSDD network institutes and contacts
Dave Brown (BNL) Elizabeth Ricard (BNL) Filip Kondev (ANL) Jun Chen (FRIB/MSU) Lee Bernstein (LBNL) Michael Smith (ORNL) Ninel Nica (Texas A&M)	D	ata Centres	Evaluation Tools Online Webtools (V. Zarkin) Revised Guidelines for Evaluators, 2021 Guidelines for ENSDF half-
John Kelley (TUNL) Tibor Kibedi (ANU)	Data Centre	Mass Chain Responsibility/Activity	life evaluations ENSDF Manual
Stefan Lakovski (Umk Sofia) Xiadiony Havay (CNOC) Dong Yang (Unk, Jilin) Zotan Elskes (ZNOKI) Gopal Mukherijes (VECC) Heideli Iurna (LAEA) Alexandru Negret (IPN-HH) han Mitropolsky (PNP) Alexandru Negret (IPN-HH) han Mitropolsky (PNP) Alexandre Rotionov Janos Timar (ZNOKI) Sorin Pascu Andrea Mattera Chris Morse Domrie Mason Benjamn Shu Shara Ca Jin Wu	National Nuclear Data Center [link] Brookhaven National Laboratory Contact: Dave Brown	A-Chain Evaluations: 1,45-50,64,68,70,82,84-89,94-100,113-116,136-145 (ex. 140-141), 149-165 (ex. 153,155,157,158,160),175,180-183,185,188-190,194,230-240,>249 Data Dissemination Maintenance of the Evaluated Nuclear Structure Data File (ENSDF) and editorship of the Nuclear Data Sheets journal	ENSDF Procedures Specialized Workshop for NSDD Evaluators ENSDF Codes Improvement of ENSDF Codes A NSDD Meetings 25th Meeting 2024 24th Meeting 2024 24th Meeting 2029
	Nuclear Data Group [ink] Oak Ridge National Laboratory Contact: Michael Smith	A-Chain Evaluations: 69,241-249	23rd Meeting 2019 22rd Meeting 2017 21st Meeting 2015 20th Meeting 2013 19th Meeting 2009 17th Meeting 2009
	Bay Area Nuclear Data Group (link) Lawrence Berkeley National Laboratory and University of California Berkeley Contact: Lee Bernstein	A-Chain Evaluations: 21-30,81,83,90-93,166-171,184-193 (ex. 185,188-190),210-214	16th Meeting 2005 15th Meeting 2003 14th Meeting 2000
Kiana Setoodehnia Aaron M. Hurst Jon Batchelder Sukhjeet Singh Dhindsa	Nuclear Data Evaluation Project [link] Triangle Universities Nuclear Laboratory	A-Chain Evaluations: 2-20	AEA-ICTP 2022 IAEA-ICTP 2018 IAEA-ICTP 2016 IAEA-ICTP 2014

We evaluate:

- γ -ray energies (E γ), and intensities (I γ) •
- γ -ray multipolarities (λ L) and mixing ratios (δ) ٠
- Levels J^{π} , $T_{1/2}$ •

We calculate:


- Level energies (E_{level}) ٠
- Intensity balances to each level •
- Branching ratios •
- Electromagnetic transition rates ٠

We use:

- AME2021 (2021Wa16) ٠
- Static moments tables (N. Stone)

Process:

- Nucleus by nucleus approach a critical compilation of published data (primary, secondary data)
- Data organized in data sets, each of which containing data from similar reactions, β^{\pm} , *EC* etc.
- Adopted levels and gammas data sets contain recommended numbers for all measured quantities
- The process is repeated for all nuclei in a given mass chain
- Submission to NNDC for review
- Reviewed data disseminated through the www.nndc.bnl.gov/ensdf site and published in Nucl.Data Sheets
- Each mass-chain should be re-evaluated once/decade
- Meanwhile
 - unevaluated data is critically compiled and uploaded to XUNDL data base
 - Correction still can be made and uploaded to ENSDF

Data Bases and Utilities

- **NSR** (Nuclear Science References) •
- **XUNDL** (Unevaluated Nuclear Structure and Decay Data Library)

Data Center

ENSDF (Evaluated Nuclear Structure and Decay Data File)

Codes

- Fmtchk, pandora, consistencyCheck
- Gtol
- Bricc
- Logft
- Avetool
- JavaNDS

EXAMPLES

Example 1: the 1871 keV state in ¹¹²Cd

1870.68 [@] 4	4+	A DEF	J^{π} : 1253.31 γ E2 to 2 ⁺ ; 455.14 γ M1+E2 to 4 ⁺ ; band
1870.96 <i>5</i>	0+	AB DEFGH J LM QR T	member. V XREF: J(1869.7)Q(1873)R(1872)T(1876). J ^{π} : 1253.49 γ E2 to 2 ⁺ ; L(pol d,t)=0.

¹¹²Cd Levels

Cross Reference (XREF) Flags

Ι

J

Κ

L

Μ

Ν

0

Ρ

- ¹¹²Ag β^{-} decay (3.130 h) Α ¹¹²In ε decay (14.88 min) В С Coulomb excitation ¹¹⁰Pd(α ,2n γ) D 112 Cd(n,n' γ) Е ¹¹²Cd(p,p' γ) F G ¹¹¹Cd(n, γ) E=th:primary ¹¹¹Cd(n,γ) E=th:secondary Н
- - 110 Pd(³He,n)

- 110 Cd(t,p)
- 113 Cd(pol d,t)
- S ¹¹²Cd(α, α')
- T ¹¹¹Cd(d,p)
- $\mathbf{U} \qquad {}^{112}\mathrm{Cd}(\mathrm{pol}\ \mathrm{p},\mathrm{p'})$
 - V ¹¹²Cd(p,p')
 - $^{114}Cd(p,t)$

Example 1: the 1871 keV state in ¹¹²Cd

1870.68 [@] 4	4+	A	DEF	J ^{π} : 1253.31 γ E2 to 2 ⁺ ; 455.14 γ M1+E2 to 4 ⁺ ; band
1870.96 <i>5</i>	0+	AB	DEFGHJLM QRT	member. XREF: J(1869.7)Q(1873)R(1872)T(1876). J ^{π} : 1253.49 γ E2 to 2 ⁺ ; L(pol d,t)=0.

 112 Cd(n,n' γ) 2001Ga44,2007Ga22

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, F. G. Kondev	NDS 124, 157 (2015)	1-Aug-2014

2007Ga22, 2001Ga44: Facility: University of Kentucky Van de Graaf accelerator; Beam: pulsed, E(n)= 1.8 to 4.2 MeV from ${}^{3}H(p,n){}^{3}He$ reaction, FWHM = 1 ns, neutron flux = 5x10⁷; Target: 52.5g CdO enriched to 98.18% in ${}^{112}Cd$; Detectors: three Compton-suppressed HPGe; Measured: γ , $\gamma(\theta)$, γ - γ coinc., I γ , $E\gamma$, $T_{1/2}$; Deduced: γ -ray Mult., ${}^{112}Cd$ level scheme; From the same collaboration: 2009Gr10, 2000Ga22, 1999Ga20, 1999Ga15, 1999Mc03, 1997LeZZ, 1997YaZZ, 1996Ga26, 1996Le19, Others: 2010Sc13, 1990Ar20, 1976De23

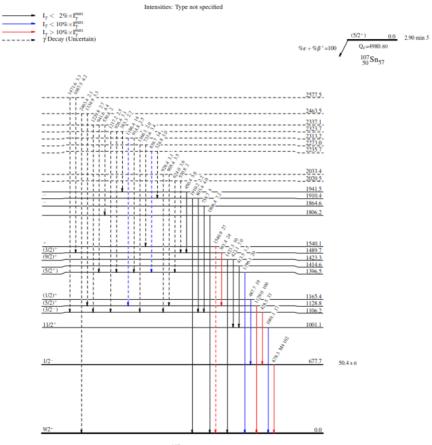
Example 1: the 1871 keV state in ¹¹²Cd

								10 B(E2)(W.u.)=0.88 17
								Mult.: $\alpha(K) \exp = 0.00050$ 7 in ¹¹¹ Cd(n, γ) E=th (1997Dr03).
								Mult.: $a_0=15.6$ 2; $A_2=0.210$ 13; $A_4=-0.036$ 19 from $\gamma\gamma(\theta)$ in $^{110}\text{Pd}(\alpha, 2n\gamma)$ (1993De09).
1870.68	4+	401.88 13	58 3	1468.822 2+	E2		0.01277	$\alpha(K)=0.01093 \ 16; \ \alpha(L)=0.001492 \ 21; \ \alpha(M)=0.000288 \ 4$
								$\alpha(N)=5.04\times10^{-5}$ 7; $\alpha(O)=2.44\times10^{-6}$ 4
								Mult.: $A_2 = +0.60 2$, $A_4 = -0.10 2$ in ${}^{110}Pd(\alpha, 2n\gamma)$ (1997Dr03).
		455.26 13	32.0 17	1415.480 4+	M1+E2	+2.7 + 4 - 3	0.00871	$\alpha(K)=0.00750 \ 11; \ \alpha(L)=0.000987 \ 15; \ \alpha(M)=0.000190 \ 3$
								$\alpha(N)=3.35\times10^{-5}$ 5; $\alpha(O)=1.706\times10^{-6}$ 24
								Mult.: A ₂ =0.06 23, A ₄ =-0.41 24 from $\gamma\gamma(\theta)$ in ¹¹⁰ Pd(α ,2n γ) (1997Dr03).
								δ: Other: 2.43 15 or -0.45 14 from γγ(θ) in ¹¹⁰ Pd(α,2nγ) (1997Dr03).
		558.39 11	100.0 25	1312.390 2+	E2		0.00487	$\alpha(K)=0.00421$ 6; $\alpha(L)=0.000542$ 8; $\alpha(M)=0.0001042$ 15
								$\alpha(N)=1.84\times10^{-5}$ 3; $\alpha(O)=9.62\times10^{-7}$ 14
								Mult.: $A_2=+0.64 \ 3$, $A_4=-0.12 \ 4$ from $\gamma\gamma(\theta)$ in ¹¹⁰ Pd(α ,2n γ) (1997Dr03).
		1253.16 12	89 3	617.518 2+	E2		7.17×10^{-4}	$\alpha(K)=0.000612 \ 9; \ \alpha(L)=7.25\times10^{-5} \ 11; \ \alpha(M)=1.387\times10^{-5} \ 20$
								$\alpha(N)=2.47\times10^{-6}$ 4; $\alpha(O)=1.431\times10^{-7}$ 20; $\alpha(IPF)=1.510\times10^{-5}$ 22
								Mult.: $A_2=+0.52$ 4, $A_4=-0.15$ 6 from $\gamma\gamma(\theta)$ in ¹¹⁰ Pd(α ,2n γ) (1997Dr03).

						γ ⁽¹¹² Cd) ((continued)	
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f J	Mult. [†]	$\delta^{\dagger f}$	α^{e}	Comments
1870.96	0+	402.50 16	11.2 12	1468.822 2	+ E2		0.01271	α(K)=0.01088 I6; α(L)=0.001485 2I; α(M)=0.000287 4 $α(N)=5.02\times10^{-5} 7; α(O)=2.43\times10^{-6} 4$ Mult.: A ₂ =+0.60 2, A ₄ =-0.10 2 from γγ(θ) in ¹¹⁰ Pd(α,2nγ) (1997Dr03).
		558.7	3.5 [@] 9	1312.390 2	+ E2		0.00487	$\alpha(K)=0.00420 \ 6; \ \alpha(L)=0.000541 \ 8; \ \alpha(M)=0.0001041 \ 150000000000000000000000000000000000$
		1253.56 12	100.0 12	617.518 2	+ E2		7.16×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000612 \ 9; \ \alpha(\mathbf{L}) = 7.25 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{M}) = 1.386 \times 10^{-5} \ 20 \\ &\alpha(\mathbf{N}) = 2.47 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 1.430 \times 10^{-7} \ 20; \\ &\alpha(\mathbf{IPF}) = 1.517 \times 10^{-5} \ 22 \\ &\text{Mult.: } \mathbf{A}_2 = 0.218 \ 42 \text{ and } \mathbf{A}_4 = 0.990 \ 51 \text{ in } ^{112} \text{In } \varepsilon \text{ decay} \end{aligned}$

Example 2: ¹⁰⁷Sn beta-decay data

исследование распада 107 Sn В.П.Бурминский, О.Д.Ковритин


Наиболее полные данные о \mathcal{J} -лучах, сопровожданных β -распад 107 S_{Ω} известны из нашей работы /1/. В работе /2/ приводится нижияя часть схемы распада $107S_{\Omega}$.

В настоящей работе обнаружен ряд шовых *У*-переходов и существенно уточнены значения энергий известных *У*-линшй, сопровождаюимх β -распад ¹⁰⁷S_Π. Кроме того, определены коэффициенты подавления *У*-лучей в измереншях спектров интегральных антисовпадений. Результаты измереный приведены в таблице.

Еу(ДЕу), КЭВ	Iy(∆Iy), ofH.eg.	хоэф. подавления	Еу(<u>(</u> Еу), кэв	Іу(∆Іу), отн.ед.	коэф. подавления
324,8(4) [*]	3,0(5)	-	1087,5(3)	4,2(II)	4,2(6)
361,44(13)	24(2)	7 , 5(I3)	1109,3(6)	I,4(6)	4,5(7)
374,I0(I7) [¥]	3,8(6)	5,9(IO)	III9,0(6) [*]	3(I)	I,8(4)
383,3(7)	2,7(8)	6,5(II)	II29,04(II)	100	2,8(4)
413,5(9)*	I,5(6)	· 2,5(5)	II66,I(7)	2,0(5)	3,6(6)
422,I(3)	7,0(17)	8(2)	II73,7(5)	2,2(3)	I,7(3)
428,46(5)	33(3)	3,I(5)	II86,44(6)	I4(I)	3,9(5)
450,43(19)	5,6(I4)	8(2)	1217,2(4)	2,5(6)	3,8(6)
487,67(I8)	I9(2)	3,I(5)	1222 ,2(5)[*]	2,4(6)	4,3(7)
530 , 8(7) [₹]	2(I)	9(2)	I229,8(4) [*]	2,7(5)	2,9(5)
624,0(5)*	3,6(14)	3,8(7)	I244,5(7) [*]	3(I)	2,9(6)
678,34(8)	I02(5)	I,0(I)	I254,2(8) [*]	2,4(3)	3(1)
733,55(25)	3,4(12)	4,2(6)	1334,9(6)	3,3(6)	8(2)
758,7(3)	5(2)	~ 5	1359,65(14)	7,6(II)	3,0(5)

	EG	RI +- DRI	MULT	MR	CC	PARENT	SPIN	DAUGHTER		ID	
	514	100.00 0.00				514.0+X	(27/2+)	~	(23/2+)	54FE(59C0,A2PG)	
	514.5 7	100.00 9.86					(25/2+)		(23/2+) (21/2+)	78SE(32S, P2NG)	
	678.3 10	100.00 0.00	M4		0.060	677.3	1/2-	0.0	9/2+	ADOPTED LEVELS,	GAMMAS
	678.3 10	100.00 4.90	M4			677.7	1/2-	0.0	9/2+	107SN EC DECAY	
	678.3 10	100.00 0.00	M4			678.2	1/2-	0	9/2+	106CD(3HE, PNG)	
	678.3 3	100.00 0.00	M4			678.3	1/2-	0.0	9/2+	106CD(D,NG)	
	678.34 6	100.00 0.00	M4			678.34	1/2-	Θ	9/2+	106CD(A,P2NG)	
	678.4 3	100.00 0.00	M4		0.0590 8	678.5	1/2-	0.0	9/2+	107IN IT DECAY	
	679	100.00 0.00	M4			679	1/2-	0	9/2+	COULOMB EXCITAT	ION
	1000	100.00 0.00				1000.0	11/2+	0.0	9/2+	54FE(59C0,A2PG)	
	1000.4 5	100.00 7.69	M1			1000.5	11/2+	0.0	9/2+	58NI(52CR,3PG),	
	1001	100.00 6.34				1001	11/2+	0	9/2+	COULOMB EXCITAT	
	1001.1 10	100.00 23.53				1001.1	11/2+	0.0	9/2+	107SN EC DECAY	(2.90 M)
	1001.3 3	100.00 10.00	E2(+M1)				(11/2)+		9/2+	106CD(D,NG)	
	1001.4	100.00 0.00				1001.4	(11/2+)		(9/2+)	92M0(19F,2P2NG)	
	1001.5 10	100.00 0.00	M1			1001.4	11/2+	0.0	9/2+	ADOPTED LEVELS,	GAMMAS
	1001.46 8	100.00 0.51	M1			1001.48		0	9/2+	106CD(A, P2NG)	
	1001.5 10 1001.6 3	100.00 3.65 100.00 5.80	M1			1001.5	11/2+	0.0	9/2+	94M0(160, P2NG)	
	1001.5 10	100.00 5.80 100.00 9.70	M1			1001.51 1001.6	11/2+ 11/2+	0.0 0	9/2+ 9/2+	78SE(32S,P2NG) 106CD(3HE,PNG)	
	1001.6 1	100.00 1.30	M1			1001.61		0	9/2+	54FE(58NI,5PG),	
	1001.0 1	100.00 1.50	111			1001.01	11/2+	0	5/2+	J4FE(JONI, JFO),	
	428.5 10	100.00 0.00	M1(+E2)			1105.6	(3/2)-	677.3	1/2-	ADOPTED LEVELS,	GAMMAS
	428.5 10	100.00 9.09				1106.2	(3/2-)	677.7	1/2-	107SN EC DECAY	(2.90 M)
	428.4 10	100.00 4.17				1106.6	3/2-	678.2	1/2-	106CD(3HE, PNG)	
	428.5 3	100.00 0.00	M1(+E2)			1106.8	(3/2)-	678.3	1/2-	106CD(D,NG)	
	429	100.00 LT				1107	3/2-	679	1/2-	COULOMB EXCITAT	ION
	1129.3 10	100.00 0.00	E2			1128.4	(5/2)+	0.0	9/2+	ADOPTED LEVELS,	GAMMAS
	1129.0 10	100.00 0.00				1128.8	(5/2)+		9/2+	107SN EC DECAY	(2.90 M)
	1129.2 4	100.00 5.00	E2			1129.2	(5/2)+		9/2+	106CD(D,NG)	
	1129.3 10	100.00 0.00	E2			1129.2	5/2+	0	9/2+	106CD(3HE, PNG)	
	487.6 10	100.00 0.00	E1			1164.7	(1/2)+		1/2-	ADOPTED LEVELS,	
	487.7 10	100.00 10.53				1165.4	(1/2)+		1/2-	107SN EC DECAY	(2.90 M)
	487.6 10	100.00 3.14				1165.8	(1/2,3/		1/2-	106CD(3HE, PNG)	
	487.6 4	100.00 10.71	E1			1166.0	(1/2)+	678.3	1/2-	106CD(D,NG)	
	660	100.00 0.00				1174.0+X	(31/2+)	514.0+X	(27/2+)	54FE(59C0,A2PG)	
	660.0 3	100.00 9.52				X+1174.5	(29/2+)	514.5+X	(25/2+)	78SE(32S,P2NG)	
	1396.1 10	100.00 0.00	(E2)			1395.6	(5/2+)	0.0	9/2+	ADOPTED LEVELS,	GAMMAS
	1396.0 5	100.00 9.62	(E2)			1396.0	(5/2)+	0.0	9/2+	106CD(D,NG)	
	1396.1 10	100.00 3.44				1396.1		0	9/2+	106CD(3HE, PNG)	
	1396.1 10	100.00 20.00				1396.5	(5/2+)	0.0	9/2+	107SN EC DECAY	(2.90 M)
	413	0.00 0.00				1413.0	13/2+	1000.0	11/2+	54FE(59C0,A2PG)	
	1413	0.00 0.00				1413.0	13/2+	0.0	9/2+	54FE(59C0, A2PG)	
-	413.2.5	- 41-88 - 3-19	M1			1413_9	- 13/2+	1000 5	11/2+	-58NT (52CR - 3PG) -	54FF (56FF

Example 2: ¹⁰⁷Sn beta-decay data

107 In 58

Example 3: ¹⁹⁹TI SF

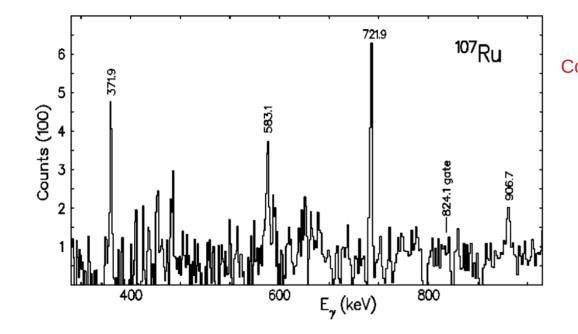
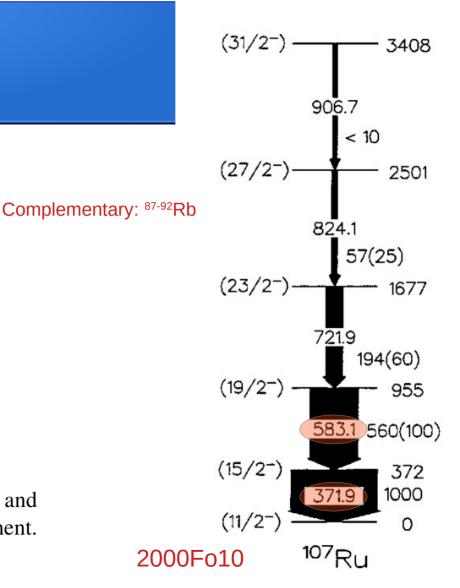



FIG. 4. Sum of spectra double-gated on (371.9+824.1 keV) and (583.1+824.1 keV) lines in ¹⁰⁷Ru from the ¹⁹⁹Tl(CN) experiment. The energies of the transitions are in keV.

Example 3: ²⁵²Cf SF

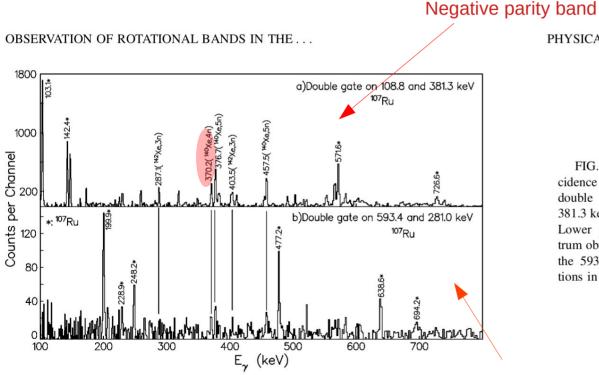
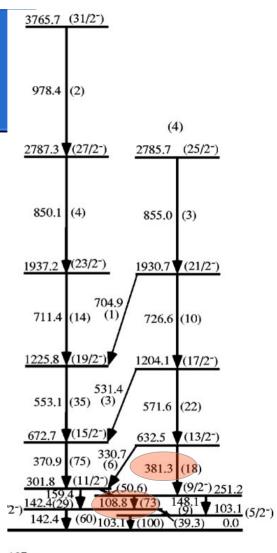
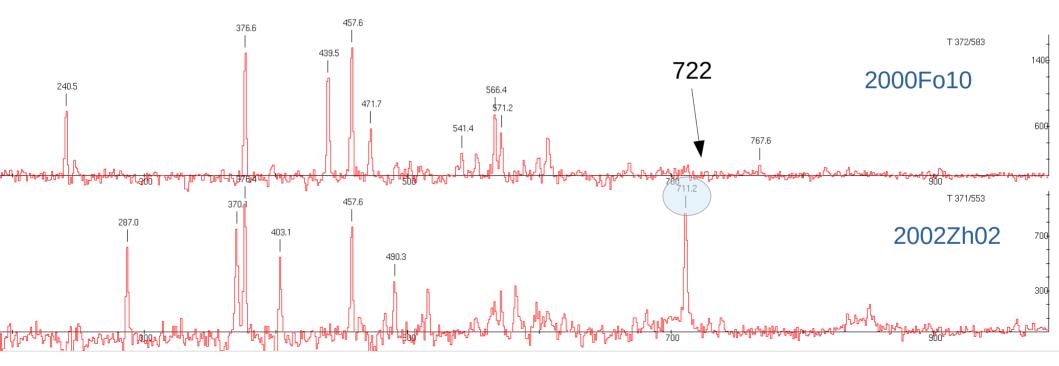



FIG. 2. (a) Upper panel: Coincidence spectrum obtained by double gates on the 108.8 and 381.3 keV transitions in 107 Ru. (b) Lower panel: Coincidence spectrum obtained by a double gate on the 593.4 and 281.0 keV transitions in 107 Ru.

PHYSICAL REVIEW C 65 014307



Positive parity band

 $^{107}_{44}$ Ru $_{63}$

2002Zh02

Example 3: ²⁵²Cf SF

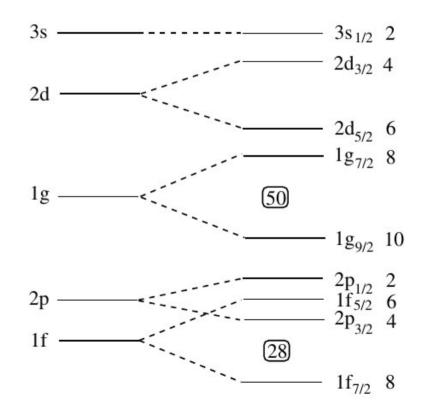
Example 3: ²⁵²Cf SF

Contents lists available at ScienceDirect

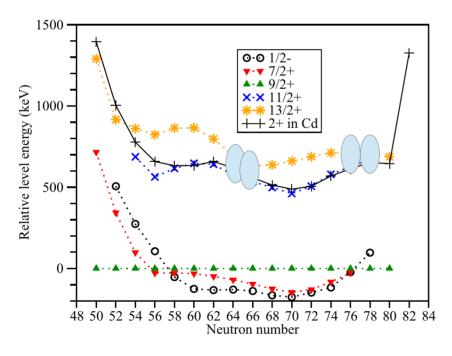
Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

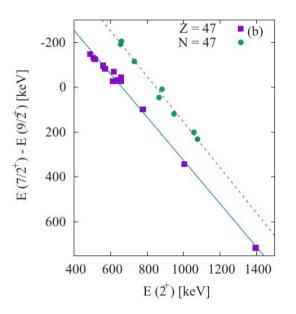
J.F. Smith^m, J. Vesic^{i,n}


FATIMA — FAst TIMing Array for DESPEC at FAIR

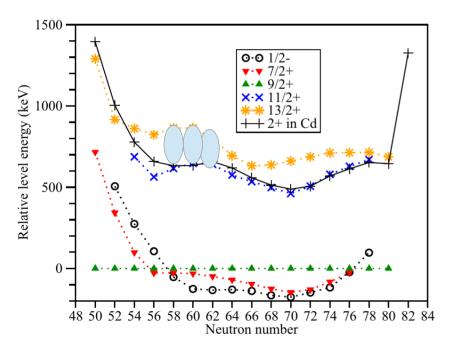
M. Rudigier ^{a,b,*}, Zs. Podolyák ^a, P.H. Regan ^{a,c}, A.M. Bruce ^d, S. Lalkovski ^{a,e}, R.L. Canavan ^{a,c}, E.R. Gamba ^d, O. Roberts ^d, I. Burrows ^f, D.M. Cullen ^g, L.M. Fraile ^h, L. Gerhard ^j, J. Gerl ⁱ, M. Gorska ⁱ, A. Grant ^f, J. Jolie ^j, V. Karayonchev ^j, N. Kurz ⁱ, W. Korten ^k, I.H. Lazarus ^f, C.R. Nita ¹ V.F.E. Pucknell ^f, J.-M. Régis ^j, H. Schaffner ⁱ, J. Simpson ^f, P. Singh ^k, C.M. Townsley ^a,


²⁵²Cf SF Decay data set

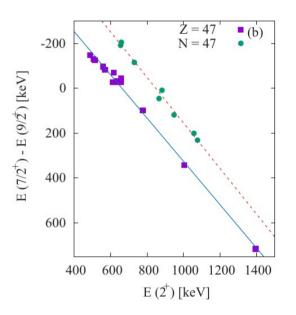
Detectors: Gammasphere, comprising 55 HPGe + FATIMA, comprising .. LaBr₃:Ce Measured: g-g-g, g-g-g, g-gg(t), EG,RI Deduced: level schemes, T_{1/2}


- Irregular ordering of the lowest-lying 7/2+ and 9/2+ states, prominent feature of the Ag isotopic chain.
- Expected significant $\pi g_{9/2}$ contribution for the Ag positive-parity excited states.
- The $\pi g_{9/2}$ -3 scheme generates a multiplet of states with spins up to 21/2+.
- Single particle transition across the shell gap is unlikely to be the reason for 7/2+.
- Extensive studies via large scale shell model calculations with effective Q·Q and surface delta (SDI) interactions, three-valence holes-vibrator coupling model calculations, IBFM, etc.

• Systematic studies on the Ag isotopic chain show that the *j*, *j*-1 energy gap is strongly correlated with the energies of the 2+ states in the neighbouring even-A nuclei. Hence, the core excitations play an important role in the development of the low-energy part of the Ag spectrum.

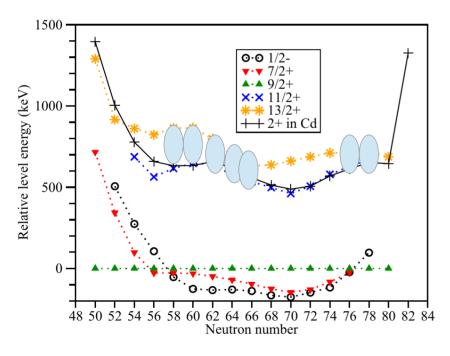


 The 11/2⁺, 13/2⁺ evolution with neutron number suggests that their wave functions are also dominated by the core excitation.

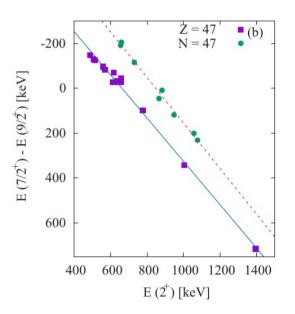


S.Lalkovski, S.Kisyov, Phys.Rev.C106, 064319 (2022)

• Systematic studies on the Ag isotopic chain show that the *j*, *j*-1 energy gap is strongly correlated with the energies of the 2+ states in the neighbouring even-A nuclei. Hence, the core excitations play an important role in the development of the low-energy part of the Ag spectrum.



 The 11/2⁺, 13/2⁺ evolution with neutron number suggests that their wave functions are also dominated by the core excitation.



S.Lalkovski, S.Kisyov, Phys.Rev.C106, 064319 (2022)

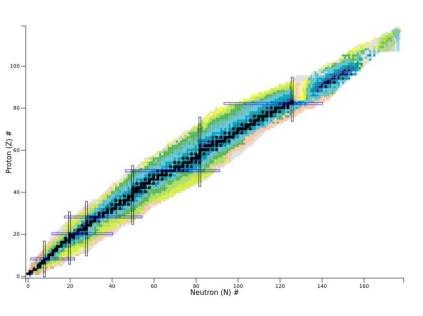
• Systematic studies on the Ag isotopic chain show that the *j*, *j*-1 energy gap is strongly correlated with the energies of the 2+ states in the neighbouring even-A nuclei. Hence, the core excitations play an important role in the development of the low-energy part of the Ag spectrum.

 The 11/2⁺, 13/2⁺ evolution with neutron number suggests that their wave functions are also dominated by the core excitation.

S.Lalkovski, S.Kisyov, Phys.Rev.C106, 064319 (2022)

CTBTO project – a different approach

¹⁰⁶Pd₆₀


NUCLEAR

DATA

SHEETS

 106 Rh β^{-} decay (28.6 s) 1982Ka10.1977Ok02.1977Ok03 (continued) $\gamma(^{106}\text{Pd})$ Iv normalization: $I(512v)_{abc} = 20.6\% 6$ (1969Od01); Other: $I(616+622v)_{abc} = 10.6\% 3$ (1969Od01), $I(512v)_{abc} = 21.0 20\%$, $I(616+622)_{abc} = 10.0 10\%$ (1966Ov01). This table lists only data taken with semiconductor detectors. $\alpha(K)\exp=ce(K)/I\gamma$ normalized to $\alpha(K)(512\gamma)=0.00484$ 7 (E2 BRICC theory). Ι_ν‡@ $\alpha^{\&}$ E_{γ} Mult.[#] E_i (level) Comments 333 5 4 0.024 10 1562.259 2^{+} 1229.19 4+ E21 0.02088 30 E_v: 333.5 4 (19770k02). Iv: 0.024 10 (1977Ok02). 428.31 11 E_v: 428.4 2 (1982Ka10), 428.4 2 (19770k02), 428.39 22 (1975Hs02). 0.322 12 1562.259 2^{+} 1133.706 0+ E21 0.00948 13 428.3 3 (1972Ma71), 428.19 25 (1972GeZG), 427.9 5 (1969St03), 427.7 10 (1968Ha35); Others: 428.20 (2017Da31), 427 (1971Az02), I_v: 0.302 7 (2017Da31), 0.346 11 (1982Ka10), 0.36 4 (1977Ok02), 0.312 18 (1975Hs02), 0.35 18 (1972Ma71), 0.45 5 (1969St03); Others: 0.3 (1971Az02), 1.38 20 (1972GeZG), 0.014 5 (1968Ha35); 434.14 14 0.111.6 1562.259 2^{+} 1128.062 2+ [M1+E2] 0.0085 6 E_v: 434.25 21 (1982Ka10), 434.2 3 (1977Ok02), 434.3 5 (1975Hs02), 433.5 4 (1972GeZG), 434.1 5 (1972Ma71), 435.0 15 (1969St03). I_v: 0.099 10 (1982Ka10), 0.09 2 (1977Ok02), 0.118 6 (1975Hs02), 0.077 39 (1972Ma71); Other: 0.23 6 (1969St03), 1.7 5 (1972GeZG), E_v: 439.17 27 (1982Ka10), 439.5 5 (1977Ok02), 439.0 7 (1972GeZG), 439.24 22 0.054 9 2001.57 0^{+} 1562.259 2+ [E2] 0.00878 12 4 439.6 10 (1972Ma71). I_{ν} : 0.062 10 (1982Ka10), 0.046 20 (1977Ok02), 0.03 2 (1972Ma71); Other: 1.1 4 (1972GeZG). 511.8595 30 100 511.861 2^{+} 0.0 0^{+} E2 0.00558 8 E_{v} : 511.83 8 (1982Ka10), 511.85 1 (1977Ok02), 511.8605 31 (1976Sh25), 511.80 15 (1975Hs02), 511.85 8 (1972GeZG), 511.8 2 (1972Ma71), 511.8 2 (1969St03), 511.9 3 (1968Ha35), 512.0 5 (1967Fo09), 511.6 5 (1967Ra11); Others: 511.86 (2017Da31), 511.8605 31 relative to the 511 annihilation peak in 1976Sh25, 512 (1971Az02), 512 (1969Od01); I_{γ} : absolute $I_{\gamma}(512\gamma)_{abs}=20.6\% \ 6 \ (1969Od01), \ 21\% \ 2 \ (1966Ov01),$ 22.0% 11 (1975Ge06), 20.5% (1953Ka47). Mult.: $A_2 = -0.14$ 9, $A_4 = 0.44$ 11 (1975Hs02); Also, $\alpha(k) \exp = 0.0048$ 8 (1967Vr05), 0.0035 1 (1952Al06), 0.0054 15 (1950Me86); Other: 0.00480 (1975DzZU)· K/LM=6-15-62 (1960Se05)· K/L=7-1-1 (1958Gr07)· Other:

Summary

Core ENSDF nuclear data evaluation activities

- Mass chains data compilation, evaluations and dissemination; For a given mass chain typically (A=107) there are
 - 15 nuclei
 - 370 sources from 1939 to 2024
 - 88 data sets
- XUNDL evaluations by article/nucleus

Data evaluations for monitoring applications

- **CTBTO** Recommended nuclear data and future data needs for 120 FP
- 40 nuclei are under presently under evaluation (a team of NSDD evaluators)

Evaluations on data for medical applications

• ¹¹⁷Sn nucleus data evaluation, comprising 22 data sets (Done within SANDA. Now the whole A=117 under evaluation as part of the training process)

Summary

Data analysis - some recent results

- ¹⁴⁶La beta-decay with Gammasphere (experiment, performed at Argonne National laboratory, USA)
- ⁹⁹Rh fast-timing data from RoSphere (experiment, performed at IFIN-HH)
- ¹¹⁵Ag from ²⁵²Cf spontaneous fission (experiment, performed at Argonne National laboratory, USA.)

Experiments targeted on specific phenomena

- Sub-nanosecond lifetimes of core-excited states in ¹⁰⁵Cd (experiment performed in July/August 2023 in IFIN-HH (Romania))
- Sub-nanosecond lifetimes lifetimes in ^{103,105}Ag (experiment performed in July/August 2023 in IFIN-HH (Romania))
- Sub-nanosecond lifetimes lifetimes in ¹⁰⁷Ag (experiment performed in Dec 2024 in IFIN-HH (Romania). Ongoing analysis.)

Collaboration

Data Evaluation

- IFIN-HH: A.Negret, H.K.Singh (APRENDE Project)
- **ATOMKI:** Z.Elekes, J.Timar (APRENDE Project)
- Sofia University: O.Yordanov (APRENDE Project), N.Petrov
- NSDD: F.Kondev (ANL), A.Nichols (Oxford Uni), J.Chen (MSU), T.Kibedi (ANU), S.Pascu (IFIN-HH) (CTBTO Project)

EXPERIMENTAL

- Lawrence Berkeley National Lab: S.Kisyov
- National Military Medical Academy: D.Ivanova
- Sofia Medical University: L.Atanasova
- IFIN-HH: R.Lica, C.Mihai

Thank you!