

Decay Heat calculations

lydie.giot@subatech.in2p3.fr

On behalf on Molten Salt Reactors team (CNRS LPSC & Subatech)

APRENDE Experimentalists - Evaluators Workshop 26/02/2025

Challenges associated to Decay Heat

- Safety/Radiation protection
- Economic interests for the complete cycle (Gen II, Gen III)
- Key issue for new concepts: Gen IV, innovative reactor design, innovative fuels, most of the concepts with fast neutrons => not so many data, limited reactor operation feedback
- Important design parameter for a spent fuel repository

Challenges associated to Decay Heat

 Increasing will of safety authorities => better understanding of uncertainty sources : technological, operation, calculation methods & nuclear data

Industrial interest: improved control of uncertainty calculations & safety margins

Calculations with evaluated codes (experimental measurements, other codes) Identifying biases in calculations (ex: nuclear data) for improvement

Decay heat calculations

Summation method $DH(t_c) = f(t_c) = \sum_{i}^{n} N_i(t_c) \lambda_i E_i$

- N_i : Number of nuclei i at cooling t_c
- λ_i : Decay constant
- $\overline{E_i}$: Mean decay energy of nucleus i

Atomic Densities N_i: solving Bateman's equations Transport and depletion calculations : reactor model + neutronic code

$$\frac{\partial N_{i}(t)}{\partial t} = \sum_{j \neq i} \left(b_{j \rightarrow i} \lambda_{j} + \langle \sigma_{j \rightarrow i} \phi \rangle \right) N_{j}(t) - \left(\lambda_{i} + \langle \sigma_{i} \phi \rangle \right) N_{i}(t)$$

production & disappearance per radioactive decays & nuclear reactions

- ~ 40 000 nuclear data: σ , \overline{E} , Branching Ratio, λ , Fission Yields, $\overline{\nu}$
- => Complex calculation (reactor model + depletion)
- => Quality of the code but also of the input data !

Decay heat calculations

Summation method

$$DH(t_c) = f(t_c) = \sum_{i}^{n} N_i(t_c) \lambda_i \overline{E}_i$$

E_i usually divided in 3 parts in evaluated librairies(e.g ENDF, JEFF, JENDL):

$$\overline{E}_{LP} = (\overline{E}_{\beta}) + \overline{E}_{\beta^{+}} + \overline{E}_{e^{-}} + \cdots$$
Light particles component
$$\overline{E}_{EM} = (\overline{E}_{\gamma}) + \overline{E}_{x-ray} + \overline{E}_{anni.rad.} + \cdots$$
Electromagnetic component
$$\overline{E}_{HP} = \overline{E}_{\alpha} + \overline{E}_{SF} + \overline{E}_{p} + \overline{E}_{n} + \cdots$$
Heavy particules component

E_i measurements & Pandemonium effect

Before the 90s, conventional detection techniques: high resolution γ -ray spectroscopy

Excellent resolution but efficiency which strongly decreases with increasing energy

Risk of overlooking the existence of β^- feeding into the high energy nuclear levels of daughter nuclei

Incomplete decay schemes: overestimate E_{beta}, underestimate E_{gamma}

=> Most suitable technique to re-measure <u>key</u> nuclei: Total Absorption Gamma Spectroscopy using 4π detectors (ex: Nal, LaBr3)

Decay Heat / Fission pulses

- Decay heat fission pulses measurements:

No need of XS for short irradiation times To disentangle FY vs DD data impact (ex JENDL5 FY) To identify Pandemonium FP to re-measure To develop/test uncertainty propagation calc.

Fig.2 Conceptual View of Decay Heat Measurement System Y. Ohkawachi et al., JNST 39 (2002)

Decay Heat / Fission pulses

- Decay heat fission pulses measurements:

No need of XS for short irradiation times To disentangle FY vs DD data impact (ex JENDL5 FY To identify Pandemonium FP to re-measure To develop/test uncertainty propagation calc.

Limited set of data, uncertainty ...

Extra fission pulses measurements needed !

CoNDERC IAEA Database

		Nucleus	Measurements	Cooling time	Uncertainty Range %	Year	Authors
	Fission induced per thermal neutrons	²³⁵ U	β, γ	0.4 - 10 ⁵ s	3.2% -9.5 % 2.5% -24.1% 2.5% - 8.6%	1989, 1980,1997	Dickens, Tobias, Lowell, others
		²³⁹ Pu	β, γ	1 - 10 ⁵ s	2.3% - 6.9% 2.7% -60.9% 2 % - 9.9 %	1989, 1980,1997	Dickens, Tobias, Lowell, others
		²⁴¹ Pu	β, γ	3 - 1.2 10⁴ s	4% - 11.1%	1980, 1989	Dickens
	Fission induced per fast neutrons	²³⁹ Pu	β, γ	19 - 2.4 10 ⁵ s	2.4% - 5.7%	1982	Akiyama
		²³³ U	β, γ	19 - 2.4 10 ⁵ s	3.2% -7.5%	1982, 2002	Akiyama, Ohkawachi
		²³⁵ U	β, γ	19 - 2.4 10 ⁵ s	2.1% - 6.1%	1982	Akiyama
		²³⁸ U	β, γ	0.4 – 2.4 10 ⁵ s	3.8% - 20% 1.8% - 5.3%	1997, 1998	Akiyama, Lowell
		²³² Th	γ	19 - 2.4 10⁵ s	3.7 %- 9.2 %	1997	Akiyama
		²³⁷ Np	γ	264 - 2 10 ⁴ s	not given	2002	Ohkawachi

Published TAGS measurements so far ...

TAS Collaboration : IFIC Valencia, Univ. of Surrey, Subatech/SEN team4 measurement campaigns (2007, 2009, 2014, 2022) @Jyväskylä

+ : also important for ²³²Th/²³³U cycle

A. Algora et al., EPJA 57 (2021)

Parent nuclides identified per WPEC-25 for TAGS meas. for ²³⁵U/²³⁹Pu reactors, (NEA, T. Yoshida/ A. Nichols, 2007)

7

Published TAGS measurements so far ...

TAS Collaboration : IFIC Valencia, Univ. of Surrey, Subatech/SEN team4 measurement campaigns (2007, 2009, 2014, 2022) @Jyväskylä

Isotope	Isotope	Isotope
35-Br-86 [†] *	41-Nb-99 [†]	$52\text{-}\text{Te-}135^{\dagger}$
35-Br-87 ^{†*}	41-Nb-100 ^{†*}	53-I-136 [†]
35-Br-88 ^{†*}	41-Nb-101 ^{†*}	53-I-136m [†]
36-Kr-89 [†]	41-Nb-102 ^{†*}	53-I-137 ^{†*}
36-Kr-90 [†]	42-Mo-103 [†] *	54-Xe-137 [†]
37-Rb-90m	42-Mo-105*	$54-Xe-139^{\dagger}$
37-Rb-92 ^{†*}	$43-Tc-102^{\dagger *}$	$54-Xe-140^{\dagger}$
38-Sr-89	43-Tc-103 ^{†*}	55-Cs-142*
38-Sr-97	43-Tc-104 [†] *	56-Ba-145
39-Y-96 [†]	$43 - Tc - 105^*$	57-La-143
40-Zr-99 [†]	43-Tc-106*	57-La-145
40-Zr-100 [†]	43-Tc-107*	
41-Nb-98 ^{†*}	$51\text{-}\text{Sb}\text{-}132^{\intercal}$	

Parent nuclides identified per WPEC-25 for TAGS meas. for ²³⁵U/²³⁹Pu reactors, (NEA, T. Yoshida/ A. Nichols, 2007)

Algora et al., TAGS PRL 2010

+ ^{91,94,95}Rb, ^{100m,102m}Nb, ^{96m}Y

: also important for ²³²Th/²³³U cycle

Published TAGS measurements so far ...

TAS Collaboration : IFIC Valencia, Univ. of Surrey, Subatech/SEN team4 measurement campaigns (2007, 2009, 2014, 2022) @Jyväskylä

MTAS Collaboration : Univ. of Warsaw, ORNL, Univ of Tennessee Experiences @ Argonne National Laboratory's CARIBU facility

Isotope	Isotope	Isotope	Parent nuclides identified per WPEC-25 for
35-Br-86 [†] *	41-Nb-99 [†]	$52\text{-}\text{Te}\text{-}135^{\dagger}$	TAGS meas. for ²³⁵ U/ ²³⁹ Pu reactors, (NEA,
35-Br-87 [†] *	41-Nb-100 [†] *	53-I-136 [†]	T. Yoshida/ A. Nichols, 2007)
$35-Br-88^{\dagger*}$	41-Nb-101 ^{†*}	53 -I- $136m^{\dagger}$	
36-Kr-891	41-Nb-102 ^{†*}	53-I-137 [†] *	
36-Kr-90 [†]	$42 - Mo - 103^{\dagger *}$	$54-Xe-137^{\dagger}$	Algora et al., TAGS PRL 2010
37-Rb-90m	42-Mo-105*	$54-Xe-139^{\dagger}$	
$37 - Rb - 92^{\dagger *}$	$43-Tc-102^{\dagger*}$	54-Xe-140 [†]	
38-Sr-89	$43 - Tc - 103^{\dagger *}$	$55-Cs-142^*$	+ 91,94,95 Rb 100m,102m Nb 96m Y
38-Sr-97	$43 \text{-} \text{Tc} \text{-} 104^{\dagger *}$	56-Ba-145	
39-Y-96 [†]	$43 - Tc - 105^*$	57-La-143	
40-Zr-99 [†]	43-Tc-106*	57-La-145	+ 89,90Rb
40-Zr-100 [†]	43-Tc-107*		
41-Nb-98 [†] *	$51-Sb-132^{+}$		

: also important for ²³²Th/²³³U cycle

A. Algora et al., EPJA 57 (2021)

End 2022 : 29 published nuclei

- Review paper coordinated per IAEA (Nichols et al., EPJ A 59 2023)

Table 1Irradiated fuel inventories and decay-heat calculations38,39,40

thermal neutron pulse (0.0253 eV)	²³⁵ U. ²³⁸ Pu, ²³⁹ Pu. ²⁴⁰ Pu, ²⁴¹ Pu. ²⁴² Pu, ²⁴¹ Am, ^{242m} Am,
	²⁴³ Am, ²⁴³ Cm, ²⁴⁵ Cm
fast neutron pulse (400 keV or 500 keV)	²³² Th, ²³³ U, ²³⁸ U, ²³⁷ Np
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	

Systems chosen to compare to FISPACT-II DH calc. with classical libraries (ENDF/B-VII.1, JEFF3.1.1, JENDL4-0)

M. Fleming, J. C. Sublet, 2015, CCFE-R15-28

DH experimental meas. available in IAEA CONDERC database

- For each fissioning system:

- 3 sets of DH calculations combining the same FY library each time with :
- Decay Data without the Algora 2010 TAGS data: reference library or baseline
- Decay Data with the Algora 2010 TAGS data : + TAGS 2010
- Decay Data with the 2021 TAGS published data : + TAGS 2021

Serpent2 used for DH with JEFF libraries But also used for cross-checks on DH with ENDF (FISPACT-II/P. Dimitriou) & JENDL (OYAK98/ T. Yoshida & F. Minato)

Project NEDS Nacre, European Project SANDA

Exchanges with TAS collaboration: SEN team@Subatech, IFIC Valencia, University of Surrey

+ TAGS 2021 : improved agreement of EEM component for ²³³U_{fast}, ²³⁸U_{fast}, ²³²Th_{fast}, for cooling time below 100s

But also need of new DH fission pulse experiments ©

Need to investigate key FPs for cooling range > 100s

Decay heat for the U/Pu industrial cycle

- « Validation of the existing codes with measured SNF decay heat is currently considered as a necessity by most of existing national and international regulations » *

IAEA Safety Standards	IAEA Safety Standards		DE SURTÉ NUT ÉAUE
for protecting people and the environment	for protecting people and the environment	GUIDE DE L'ASN	GUIDE DE L'ASN
Design of the Reactor Core for Nuclear Power Plants	Design of the Reactor Coolant System and Associated Systems for Nuclear Power Plants	IN B Conception des réacteurs à eau sous pression	Qualification des outils de calcul scientifique utilisés dans la démonstration de sûreté nucléaire – 1 ^{re} barrière
Specific Safety Guide	Specific Safety Guide	Pressurized water reactor design	Qualification of scientific calculation tools used in nuclear safety demonstrations – 1 st barrier
No. SSG-52	No. SSG-56	<i>Réalisé conjointement avec</i> PInstitut de radioprotection et de sûreté nucléaire	Réalisé conjointement avec l'Institut de radioprotection et de sûreté nucléaire
		GUIDE Nº 22 Version du 18/07/2017	GUIDE Nº 28 Version du 25/07/2017

Validation => Code + given nuclear data library

*: An introduction to Spent Nuclear Fuel decay heat for Light Water Reactors: a review from the NEA WPNCS, D. Rochman et al., EPJN 10 9 (2024), Review paper of the NEA/SG12 on decay heat

Decay heat measurements for the U/Pu cycle

<u>Available</u> decay heat measurements

CLAB Blind Benchmark 5 assemblies PWR/BWR

Limits :

- max.Burnup: 51 GWd/t, low enrichment
- Missing cooling time ranges
- Uncertainty measurements : HEDL: 10%, GE-Morris : 3-4%, CLAB : 1-2%
- No measurements for MOX assemblies

H. Akkurt EPRI Report 2024

New measurements:

- Calorimeter @CLAB still operating, unique
- 161 new Decay Heat measurements

EPRI report (Electric Power Research Institute), October 2024

- New calorimeter NAGRA, Gösgen powerplant

Objectives

- Caracterize the state of the art of calculations ... without an acces to the measurements before ... & same initial informations

- 27 laboratories/companies, codes Monte-Carlo & deterministic codes, many libraries

Fig. 8. Relative difference between measured (E) and calculated (C) decay heat rate values for the five different assemblies studied.

- First exercise at the international level !
- Importance of open source measurements & with lower uncertainties !

Uncertainty propagation

Perturbation theory Cost of mathematical development Monte-Carlo approach More flexibility vs computing capacities

DD/FY inputs for uncertainty propagation

- Almost half of decay energies without uncertainty values
- Correlation matrices not available

⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ¹ 1750 1e+06 - 9e+06 1e+05 - 1e+06 1e+04 - 1e+05 1500 bin 1e+00 - 1e+04 0e+00 - 1e+00 Number of isotopes / 1250 1000 750 500 250 0 <u>↓</u> 10⁻² 10^{-1} 100 10² 10^{4} 101 10³ 105 106 JEFF33 Mean Decay Energy ELP [eV]

ELP Decay energies

DD/FY inputs for uncertainty propagation

Decay Data

- Almost half of decay energies without uncertainty values
- Correlation matrices not available

Fission yields

Complete correlation matrices are very scarce

In evaluated libraries => mean values & std, but not correlation matrices !

- **JEFF 4-0** :

CEA 2024: New FY evaluation ²³⁵U_{th} & ²³⁹Pu_{th} with correlation matrices

- NEA/WPEC SG17 and after : CEA:

FY covariances using Bayesian GLS, JEFF-3.1.1 data N. Terranova et al., Nuc. Data Sheets 123 2015

GEF code:

derived from semi empirical model with parameters K. H. Schmidt et al., Nuc. Data Sheets 131 2016

PSI:

Combination of Bayesian and Monte Carlo D. Rochman et al., Annals of Nuc. Ener. 95 2016

SCK-CEN:

Covariances generated from JEFF-3.1.1 FY unc. & Bayesian process integrating physical constraints L. Fiorito et al., Annals of Nuc. Ener. 88 2016

Uncertainty propagation: codes development at CNRS

COCODRILO

- Sampling of DD/FY : data with no-uncertainty => 0 vs 100%std to calc. impact
- Coupled to SERPENT2 code
- First application to fission pulses : cov FY on-going

²³⁹Pu_{th} Decay heat

Y. Molla PhD, Subatech, 2025

COCONUST

- Sampling of XS from covariance matrices (NJOY or others)
- Coupled to SERPENT2 or OpenMC codes
- First application to dosimetry : PETALE program @CROCUS, EPFL

Uncertainty propagation: codes development at CNRS

COCODRILO

- Sampling of DD/FY : data with no-uncertainty => 0 vs 100%std to calc. impact
- Coupled to SERPENT2 code
- First application to fission pulses : cov FY on-going

COCONUST

- Sampling of XS from covariance matrices (NJOY or others)
- Coupled to SERPENT2 or OpenMC codes
- First application to dosimetry : PETALE program @CROCUS, EPFL

A. Laureau et al., EPJN 9, 25 (2023)

²³⁹Pu_{th} Decay heat

Molten Salt Reactors

Multiple interests but also with R&D challenges

- Versatile applications, Advantages for safety & operation

- Decay heat needs/issues

- -- different localisations, barriers ?, EPUR systems
- -- DH values for scenarii
- -- Gen IV

=> Feedback ?

- => Nuclear data needs for depletion calc.
- => Pandemonium nuclei ?

Séparation liquide gaz et unité de traitement de Electrical Échangeur de chaleur Combustible uverture fertile Injecteur de bulles Recuperator Storage and Storage and processing areas processing areas Fuel subcritical storage area

Fuel treament (Chemistry & off-gaz systems)

Fuel Depletion calculations

$$\frac{\partial \mathsf{N}_{i}^{c}(t)}{\partial t} = \sum_{j \neq i} \left(\mathsf{b}_{j \to i} \lambda_{j} + \langle \sigma_{j \to i} \phi \rangle \right) \mathsf{N}_{j}^{c}(t) - \left(\lambda_{i} + \langle \sigma \phi \rangle \right) \mathsf{N}_{i}^{c}(t) - \sum_{\mathsf{C} \neq \mathsf{E}} \lambda_{\mathsf{Treat.}}^{\mathsf{C} \to \mathsf{E}} \mathsf{N}(t)_{i}^{\mathsf{C}}(t)$$

+ $\sum_{\text{Feeding}} \lambda_{\text{Feeding}}^{\text{E} \to \text{C}} N(t)_{i}^{\text{E}}$ material supply

(Eutectic control, criticality control per composition adjustment ...)

Dedicated depletion codes : REM (CNRS), Python code + existing depletion codes : CEREIS (CNRS), EQLOD (PSI), MOSARELA (CEA), PYMS (EDF) New developments : SCALE 6.3 or industrial codes based on OpenMC for example..

Molten Salt Reactors & Modeling/nuclear data Selected example: branching ratio to isomeric states

(n,2n), (n,g) reactions can lead to gs or isomeric states

- = isomeric branching ratio of ²⁴¹Am(n,g) impact on Am, Pu and Cm inventories
- => important for core physics and fuel cycle calculations Reactivity, spent-fuel (neutron, gamma activities, decay heat)

Branching ratio (BR) depends on the neutron energy Most of the reactor codes use a single BR ratio

Usually thermal data are used per default

JEFF-3.1.1. Thermal data

Molten Salt Reactors & Modeling/nuclear data

In evaluated librairies (JEFF, ENDF, JENDL), divided in 3 groups of energy ...

Glendenin et al., Phys. Rev. C24 6 (1981)

=> different E_n to handle (data & codes implementation)

In evaluated librairies (JEFF, ENDF, JENDL), divided in 3 groups of energy ...

On- going work with GANIL FY from D. Ramos et al., Phys. Rev. Lett 123 (2019) F. Hervy' internship, Subatech, 2024

Conclusions & Outlooks

- Validation of Code + nuclear data library mandatory at the industrial level

Decay heat calculations needed at "different system sizes" fission pulses, SNF assemblies, core level ...

new type of measurements to disentangle the effects of nuclear data ?

Increasing demand to assess uncertainties

tools and methods under development, needs of extra inputs for nuclear data

R&D drive for new reactors concepts & associated fuels open new needs nuclear data, new decay heat measurements

Importance of enhancing exchanges between the communities (experimentalists, evaluators, reactor physicists & industrials)

Acknowlegments

- CNRS-IN2P3 MSR team (LPSC-Grenoble, Subatech): Michel Allibert, Daniel Heuer, Axel Laureau, Elsa Merle, PhD students: Louiliam Clot, Jad Halwani, Yohannes Molla, Hugo Pitois and interns: Alexis Bodinier, Mélanie Cadiou, Florent Hervy, David Laks

- GANIL: F. Farget, D. Ramos
- IAEA: J. C. Sublet, P. Dimitriou Tokyo Institute of Technology: T. Yoshida
- NEA: members of WPNCS Working Groups SG12 & SG16, SFCOMPO TRG
- NEEDS/SUDEC (CNRS, CEA, IRSN) & NEEDS/NACRE (CNRS, CEA) project members
- SAMOSAFER (2020-2024) & MIMOSA (2022-2026) European project members, ISAC France Relance 20230 (2022-2026) project members
- TAS collaboration (IFIC Valencia, SEN team@Subatech, Univ. of Surrey)

For collaborative work or scientific discussions !

Thanks for your attention

Backup

- For each fissioning system:

- 3 sets of DH calculations combining the same FY library each time with :
- Decay Data without the Algora 2010 TAGS data: reference library or baseline
- Decay Data with the Algora 2010 TAGS data : + TAGS 2010
- Decay Data with the 2021 TAGS published data : + TAGS 2021

- For each fissioning system:
 - 3 sets of DH calculations combining the same FY library each time with :
 - Decay Data without the Algora 2010 TAGS data: reference library or baseline
 - Decay Data with the Algora 2010 TAGS data : + TAGS 2010
 - Decay Data with the 2021 TAGS published data : + TAGS 2021
- + TAGS 2010 : improved agreement for ²³⁹Pu_{th}, ²⁴¹Pu_{th} & ²³⁸U_{fast} small impact for ²³²Th_{fast} & ²³³U_{fast}

- For each fissioning system:
 - 3 sets of DH calculations combining the same FY library each time with :
 - Decay Data without the Algora 2010 TAGS data: reference library or baseline
 - Decay Data with the Algora 2010 TAGS data : + TAGS 2010
 - Decay Data with the 2021 TAGS published data : + TAGS 2021
- + TAGS 2010 : improved agreement for ²³⁹Pu_{th}, ²⁴¹Pu_{th} & ²³⁸U_{fast} small impact for ²³²Th_{fast} & ²³³U_{fast}

²³⁵U_{th}

- + TAGS 2010 : no impact on ELP component
- + TAGS 2021 : ELP slightly improved in 10-400s but underestimation in 400-1000s

Hard to say on EEM wrt differences between the 3 experimental sets !

+ TAGS 2021 : improved agreement of EEM component for ²³³U_{fast}, ²³⁸U_{fast}, ²³²Th_{fast}, for cooling time below 100s

But also need of new DH fission pulse experiments ©

Need to investigate key FPs for cooling range > 100s

+ TAGS 2021 : small under estimation of ELP component for ²³⁵U_{th}, ²³⁹Pu_{th}, ²⁴¹Pu_{th}, ²³³U_{fast} & ²³⁸U_{fast} at cooling times ranging from 30s to 1000s

> Only one set of experimental data, till in the errors bars for ²⁴¹Pu_{th}
 > Needs for extra experimental data but also extra investigation on key FP suffering of Pandemonium effect

=> Also on going work to take into account FY and DD uncertainties through MC sampling

Overestimation of EEM component for JENDL5 for ²³⁹Pu_{th}

Impact of Fission Yields ?

Decay heat measurements for the U/Pu cycle

Figure 12. Cooling time versus measured decay heat for published and unpublished Clab decay heat measurements

Figure 1. Decay heat measurement uncertainty for the available data sets [1]