

# Nuclear data applications at SCK CEN

Two case studies

27/2/2025

L. Fiorito, A. Stankovskiy, P. Romojaro, D.Houben SCK CEN



the European Union

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

### Spent nuclear fuel (SNF) characterization

A safe, secure, ecological and economic transport, storage and final disposal of SNF requires a characterization of:

- Decay heat
- Neutron emission
- γ-ray emission
- Reactivity (Burn Up Credit (BUC), i.e. Fission Product (FP), actinides)
- Fissile material (Nuclear Safeguards, i.e. <sup>235</sup>U, <sup>239</sup>Pu)
- Specific nuclides (Long term safety) i.e. <sup>14</sup>C, <sup>36</sup>Cl, <sup>79</sup>Se, <sup>94</sup>Nb, <sup>99</sup>Tc, <sup>129</sup>I, <sup>226</sup>Ra, <sup>237</sup>Np



Views and opinions expressed are however those of the author(s) only and do not nece: Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European them.







### Spent nuclear fuel (SNF) characterization

#### Modelling & simulation (M&S)

Summation methods (first principle) Decomposition into nuclide contributions





#### Radioactive decay data

- Decay constants
- Recoverable decay energy



the European U

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

### **Major contributors**

From hundreds of nuclides at short cooling times...

...to only a handful!

Problem specific:

- UOX / MOX
- Initial enrichment (IE)
- Fuel burnup (BU)
- Cooling time (CT)



### **Major contributors**

From hundreds of nuclides at short cooling times...

...to only a handful!

Problem specific:

- UOX / MOX
- Initial enrichment (IE)
- Fuel burnup (BU)
- Cooling time (CT)



#### **Major contributors**

$$H(t) = \sum_{i} \lambda_{i} E_{d,i} N_{i}(t)$$



Fission

products

<sup>137</sup>Cs/<sup>137m</sup>Ba

Actinides

<sup>90</sup>Sr/<sup>90</sup>Y

### **Nuclide inventory (depletion codes)**



#### **Nuclide inventory (depletion codes)**



### Nuclide inventory (analytical derivation)

**Burnup indicator**: a measurable quantity used to assess the extent to which nuclear fuel has been consumed in a reactor

Burnup: a measure of how much energy has been extracted from nuclear fuel



#### UO<sub>2</sub> fuel sample

#### **Nuclide inventory**



Issue with recoverable energy in REGAL sample

Re-evaluation of CFYs with covariance data (JEFF-4.0)





### **Verification and validation**

#### C/E comparison



In burnup problems, nuclear data do not always justify discrepancies

Modelling approximations

UQ adds confidence to M&S







### Verification and validation

#### C/E comparison

In burnup problems, nuclear data do not always justify discrepancies

UQ adds confidence to M&S

Feedback from variance analysis

Specific efforts for each source term





the European Union

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

#### **ND** requirements for Gen IV systems

#### Fast spectrum

#### **Different materials**



HORIZON2020



Supplying Accurate Nuclear Data for energy and non-energy Applications

#### Inner Core Safety (177 SA) Inner Core Downcomer rods 24.3 wt% Pu (57 SA) 21.8 wt% Pu Control vessel rods Control Diluents rod Radial reflector **Outer Core** Dummy (114 SA) **Outer Core** element 27.9 wt% Pu Radial (114 SA) (shield) shielding 20.7 wt% Pu Safety rod ASTRID ALFRED





MYRRHA

Inner

Acronyms: SA: subassemblies, FA: fuel assemblies, CSD: control and shutdown devices, DSD diverse shutdown device, IPS: in-pile-section, Th IPS: in-pile-section for radioisotope production (thermal islands), LBE: lead-bismuth eutectic,

#### **Sensitivity analysis**

#### Calculate first-order derivatives and obtain a linear surrogate model



| NUCL  | XS           | ISC       |
|-------|--------------|-----------|
| Pu239 | nubar prompt | 6.89E-01  |
| Pu239 | mt 18 xs     | 4.88E-01  |
| U238  | mt 102 xs    | -1.67E-01 |
| Pu241 | nubar prompt | 1.03E-01  |
| U238  | nubar prompt | 8.70E-02  |
| Pu240 | nubar prompt | 7.45E-02  |
| Pu241 | mt 18 xs     | 7.42E-02  |
| U238  | mt 18 xs     | 5.16E-02  |
| Pu240 | mt 18 xs     | 5.00E-02  |
| Pu239 | mt 102 xs    | -4.83E-02 |
| U238  | mt 4 xs      | -4.02E-02 |
| O16   | mt 2 xs      | -4.00E-02 |
| Pu240 | mt 102 xs    | -2.51E-02 |
| U238  | mt 2 xs      | 2.38E-02  |
| Pu238 | nubar prompt | 1.79E-02  |
| Pu242 | nubar prompt | 1.53E-02  |
| Pb208 | mt 2 xs      | 1.44E-02  |
| Pb207 | mt 2 xs      | 1.32E-02  |
|       |              |           |

#### **Uncertainty quantification**

Nuclear data uncertainty propagation

Mapping input uncertainty into output MG covariance data from ENDF-6 file

#### Cover all sources of uncertainties





#### Premise for criticality safety

The disagreement between experimental results and high-fidelity M&S tools is caused primarily by uncertainty in nuclear data

### **Uncertainty quantification**

Total ND uncertainty:  $\delta k_{eff} \sim 1000 \text{ pcm}$ 

Target accuracy : $\delta k_{eff} < 500 \text{ pcm}$ 

 $k_{eff}$  uncertainty of nuclear data origin is ~700-1000pcm

| Nuclide | pcm |
|---------|-----|
| Pu239   | 571 |
| U238    | 440 |
| Pu240   | 358 |
| Pu241   | 153 |
| Pb206   | 139 |
| Fe56    | 91  |
| O16     | 88  |
| Pu238   | 87  |
| Pb208   | 82  |
| Ni58    | 55  |
| Pb207   | 53  |

General interest of ND community

- > <sup>239</sup>Pu: (n, $\gamma$ ) both in resonance and fast energy region, (n,f) fast,  $\chi$  and  $\bar{v}$  fast
- >  $^{238}$ U: (n,n') fast, (n, $\gamma$ ) resonance and fast, (n,n) resonance and fast
- > <sup>56</sup>Fe: (n, $\gamma$ ) resonance and fast
- $\blacktriangleright$  <sup>235</sup>U:  $\bar{v}$ , (n,f), (n, $\gamma$ ) resonance and fast

Specific to SCK CEN projects

- >  $^{209}$ Bi (n, $\gamma$ ) and (n,n') resonance and fast
- $\geq$  <sup>208</sup>Pb (n,n) and (n,n') resonance and fast
- <sup>241</sup>Pu (n,f) resonance and fast
- ➢ <sup>242</sup>Pu (n,f) fast
- $\succ$  <sup>240</sup>Pu:  $\bar{v}$  fast
- ➢ <sup>238</sup>Pu: (n,f) both resonance and fast





the European Union

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for 25 them.

#### **Nuclear Data Validation: VENUS-F**



| Core  | #FAs | FA composition                                | Reflector |
|-------|------|-----------------------------------------------|-----------|
| CR0   | 97   | 9 U+16 Pb                                     | Pb        |
| CC5   | 41   | 13 U+8 Pb+4 Al <sub>2</sub> O <sub>3</sub>    | Pb        |
| CC6   | 41   | 13 U+8 Pb+4 Al <sub>2</sub> O <sub>3</sub>    | Pb        |
| CC7   | 41   | 13 U+8 Pb+4 Al <sub>2</sub> O <sub>3</sub>    | Pb+C      |
| CC8   | 47   | 13 U+8 Pb+4 Al <sub>2</sub> O <sub>3</sub>    | Pb+C      |
| CC9   | 41   | 13 U+8 Bi+4 Al <sub>2</sub> O <sub>3</sub>    | Pb        |
| CC10  | 41   | 13 U+Pb+8 Bi+4 Al <sub>2</sub> O <sub>3</sub> | Pb+C      |
| CC10b | 47   | 13 U+Pb+8 Bi+4 Al <sub>2</sub> O <sub>3</sub> | Pb+C      |
| CC11  | 50   | 13 U+Pb+8 Bi+4 Al <sub>2</sub> O <sub>3</sub> | Pb+C      |



- Kinetic parameters
- CR worth
- Spectral indices
- Axial and radial traverses
- Pb-Bi void
- Fuel Doppler

#### Nuclear Data Validation: VENUS-F



Serves licensing and design tasks:

Validation of online sub-criticality monitoring of an ADS

Validation of nuclear data and neutronics codes

Experimental characterization of fast critical and subcritical cores representative for MYRRHA



Robust data assimilation for LFR nuclear data improvement



Neutron Data Benchmarking at the VENUS-F zero power reactor for MYRRHA



Neutronic experiments at VENUS-F in support of leadcooled small modular reactor deployment

### Example: EC PULSAR project

## Analysis of the production capabilities of <sup>238</sup>Pu in different irradiation conditions @BR2

#### Requirements

- At least 85% of the Pu produced must be <sup>238</sup>Pu
- Less than 2 ppm of <sup>236</sup>Pu



 $^{237}Np + n \xrightarrow{(n,\gamma)} ^{238}Np \xrightarrow{\beta^-(2.117\,d)} ^{238}Pu$  $^{238}Np + n \xrightarrow{(n,f)} fission \ products + 2 \ n$  $^{237}Np + n \xrightarrow{(n,f)} fission \ products + 2 \ n$  $^{238}Np + n \xrightarrow{(n,\gamma)} ^{239}Np \xrightarrow{\beta^-(2.355 d)} ^{239}Pu$  $^{237}Np + n \xrightarrow{(n,2n)} ^{236}Np + 2n$  $^{236}Nn \xrightarrow{\beta^{-}(22.5 h)} ^{236}Pu$ 

PULSAR