Radial TPC for e⁺e⁻ tracking — Simulations

Francesco Renga INFN Roma

Simulation framework

- A simulation framework was setup by the Tokyo group, starting from the Pioneer framework
- A basic simulation of 4 coaxial TPCs was included in the geometry model, based on cylindrical layers:
 - inner wall (50 μm Kapton), intended for gas containement and possibly serving as cathode electrode
 - gas volume (He:C₄H₁₀ 90:10)
 - dummy readout structure (5 mm FR4)
 - BESIII C-GEM strip pitch
 - GEANT hits corresponding to single ionization clusters
 - 1 T uniform magnetic field

Geometry optimization

- For a good efficiency and momentum resolution, it is critical to have at least half a turn within a single chamber for most of the tracks (i.e. tracks not exiting the outer TPC wall)
- Results shown here are for 12 cm radial extent of the TPCs -> 15 cm between conversion layers —> total detector radius ~ 80 cm

Geant hits & track fit

- With 500 µm smearing of GEANT hits in each of the two coordinates in the plane orthogonal to the tracks
 - only 1 hit used for each strip
- 17% conversion + fit efficiency

Geant hits & track fit

- With 500 μm smearing of GEANT hits in each of the two coordinates in the plane orthogonal to the tracks
 - only 1 hit used for each strip
- 17% conversion + fit efficiency

Momentum resolution (reco - true at the exit of the converter)

Worst case scenario

- A scenario where the performance is the same as the chambers tested on beam in May 2024:
 - Ar:CO2 (70:30) mixture
 - 2.4 mm strip pitch
 - 800 µm single-hit resolution (on each coordinate)
- Efficiency: 16%
- Core resolution: 354 keV = 0.66% (f_{core}: 61%)

Intermediate scenarios

	σ _{CORE} [keV]	fcore	Efficiency
Nominal	150	78%	17%
Gas (He:C4H10 —> Ar:CO2)	340	79%	16%
Strip pitch (0.65 mm —> 2.4 mm)	152	61%	16%
Single-hit resolution (500 μm —> 800 μm)	179	76%	17%
All	354	66%	16%

Ideal scenario

	σ _{CORE} [keV]	fcore	Efficiency
Nominal	150	78%	17%
Single-hit resolution (500 μm —> 0 μm)	109	88%	18%

Discussion

- It is critical to operate the detector with a very light gas mixture
 - He:C₄H₁₀ (90:10) is very light and common in drift chambers, but unusual for MPGDs—> to be tested
- Single hit resolution of 500 µm is a reasonable target to keep the pair tracker resolution (0.28%) subleading w.r.t. the active converter (0.4%)
 - in any case, cannot do better than 0.21% (MS limited)
- Pattern recognition not considered here:
 - strip crossing gives ghost hits —> track finding is not trivial
- Next steps in simulation:
 - realistic simulation of drift and hit reconstruction instead of smearing the GEANT hits
 - development of pattern recognition algorithms