Introduction to activities in Tokyo for γ pair-spectrometer

Atsushi Oya 12/Dec/2024

Reminder: Overview of design

- Photon detection with pair-spectrometer with active converter
 - Wide θ acceptance of $|\cos\theta| < 0.8 0.9$ (c.f. MEG II covers $|\cos\theta| < 0.35$)
 - Full ϕ acceptance (c.f. MEG II covers $|\phi| < \pi/3$)
 - Multi-layer design to have high efficiency

<u>*y* pair-spectrometer w/ active converter</u>

- Use of active converter
 - Energy reconstructed as $E_{rec} = p_{e+} + p_{e-} + E_{dep}$
 - Candidate material: LYSO
 → Need measurements
- Design principle
 - High resolution $p_{e\pm}$
 - But low efficiency
 - \rightarrow Need simulation

*E*_{*dep*} measured by

active converter

Overview of activities

- Activities in Tokyo
 - Performance evaluation of active converter candidate
 - Simulation of photon measurement with active converter
- Highlights from the past meetings:
 - <u>Simulation results reported Nov/2022</u>
 - Reported 2.7% efficiency
 - Simulation only for signal w/o pileup & only γ conversion studied in detail
 - LYSO performance reported last Oct
 - Beam test @KEK in 2023 (3 GeV electron beam)
 - Reported 30 ps time resolution & enough light yield of $O(10^3)$
 - Optimization of readout design
 - However, the data was not fully calibrated, leaving uncertainties on results

What news today?

- Simulation update
 - Better understanding in performance: Some additional effects found & incorporated
 - Rate-capability study: Simulation with event mixing
 - Effect of environmental materials: Material of tracker, mechanical support structure, etc
 - Background studies, as well as signal
- New measurement of LYSO performance
 - Beam test @KEK this Nov-Dec
 - Reflecting design optimization last year
 - Better calibrated dataset

Today's presentations

- My presentation: Simulations to compute sensitivity
 - BG photon simulation
 - Event mixing (pileup)
 - Effects of material around converters -

Aims to demonstrate what we should learn from simulation to compute sensitivity

- Rei's presentation: Simulations for detector effects & design optimization
 - Analysis of angle dependence
 - Possible use of angle measurement of pair tracks (context: BG studies)
 - Converter design optimization
- Fumihito's presentation: Reports on LYSO measurement
 - Explanation of configuration, purposes
 - Preliminary results & analysis plan

Sensitivity simulation

Atsushi Oya 12/Dec/2024

<u>Outline</u>

1. Signal simulation

- Review of past simulation
- Inputs for sensitivity calculation
- 2. BG photon simulation
 - Configuration of BG-photon simulation & spectrum
- 3. Event mixing: Performance at high rate
- 4. Environmental material: Impact on spectrum & efficiency
- 5. Preliminary sensitivity calculation

Review of studies so far

- Efficiency definition in the previous study
 - Simply evaluate # of events with 52.7 $< p_{+}^{MC} + p_{-}^{MC} + E_{dep}^{MC} <$ 52.9 MeV
 - Inefficient when some bremsstrahlung energy escapes out of converter → Efficiency saturation at 3 mm thickness
 - Multiple counting of E_{dep} by converter cell is already considered
 - "Boomerang inefficiency"

Review of studies so far

- Baseline choice of converter cell after optimization
 - Note: Width is sensitive to Boomerang

B-field direction

 \rightarrow Overall, 2.7% efficiency is reported

Additional considerations

- Now, we think about pileup & tracking capability
 - Tracking may be inefficient for if momentum is too low
 - $\rightarrow p_T > 5$ MeV cut is assumed
 - With pileup, possible to have e^+ from signal & e^- from pileup
 - → Introduced cut to require vertices (position getting out of LYSO) are within 2 mm
 - N.B: Thresholds above are arbitrary choices now
- Signal inefficiency? Other effects?
 - Small, but ~0.2% additional loss of efficiency
 - Mainly from $p_T >$ 5 MeV cut
 - Impact of vertex cut is negligible (Rare: Event topology as shown right)
 - Rei will discuss more detail

Signal efficiency & Spectrum

- So far, cut applied to MC truth value, 52.7 52.9 MeV
- For sensitivity computation, cut should be re-defined w/ realistic resolution
 - Need realistic BG estimation, but then, cut is re-defined giving different ϵ_{sig}

<u>Outline</u>

1. Signal simulation

- Review of past simulation
- Inputs for sensitivity calculation
- 2. BG photon simulation
 - Configuration of BG-photon simulation & spectrum
- 3. Event mixing: Performance at high rate
- 4. Environmental material: Impact on spectrum & efficiency
- 5. Preliminary sensitivity calculation

BG-γ simulation

- BG photon source in MEG II
 - 1. Muon radiative decay
 - \rightarrow Today's presentation
 - 2. Annihilation in flight of decay positron (flying e^+ annihilates in material, producing 2γ) \rightarrow Difficult to study now without knowing material for muon target & positron detector
- Use of inclusive differential branching ratio of radiative decay
 - Given in Kuno, Okada (1998)

$$\frac{dB(\mu^{\pm} \to e^{\pm}\nu\overline{\nu}\gamma)}{dyd\cos\theta_{\gamma}} = \frac{1}{y} \Big[J_{+}(y)(1\pm P_{\mu}\cos\theta_{\gamma}) + J_{-}(y)(1\mp P_{\mu}\cos\theta_{\gamma}) \Big]$$

• E_e and θ_e in full differential branching ratio are integrated out here

Generated RMD-γ spectrum

- Spectrum can be generated incl. polarization
 - (Below: IR cutoff is set at 51 MeV)

Full polarization assumed: $P_{\mu} = -1$

- Photons emitted to $\cos\theta_{\gamma} = -1$ direction
- Photons emitted to $\cos\theta_{\gamma} = 1$ direction

Simulated BG spectrum

- Evaluated spectrum with the same cuts discussed for signal
 - Apply track multiplicity cut, etc. , and then smear the sum of MC truth by 200 keV

RMD-originated BG spectrum

- Spectrum evaluated after applying vertex consistency cut & p_T cut.
- High-energy tail arise from
 Boomerang event topology.

In BG spectrum, Boomerang is more important than detector resolution itself

Boomerang in BG-γ: Case study

- Boomerang effect is also important in BG spectrum
 - Not just a matter of signal efficiency, but also high impact on N_{BG}

Smeared spectrum comparison

• 27M signal photon vs 31M BG photon of $E_{\gamma} > 45$ MeV

<u>Outline</u>

1. Signal simulation

- Review of past simulation
- Inputs for sensitivity calculation
- 2. BG photon simulation
 - Configuration of BG-photon simulation & spectrum
- 3. Event mixing: Performance at high rate
- 4. Environmental material: Impact on spectrum & efficiency
- 5. Preliminary sensitivity calculation

Event mixing implementation

- Algorithm of mixing
 - 1. First define time window (300 ns to 500 ns for discussions below)
 - 2. One sample placed at a fixed time if configured so (intended for signal)
 - 3. Pileup samples placed at a specified rate
 - Generation starts earlier than the start of time window (margin for waveform tail)
 - If margin is set to 300 ns, then pileup samples can come within 600 ns to 500 ns
 - N.B. Trigger judgment is not implemented now (not difficult to implement)

Example event mixing

• Below shows time distribution of tracks leaving converters

Analysis with pileup

- As I mentioned earlier today,
 - With pileup, possible to have e^+ from signal & e^- from pileup
 - → Introduced cut to require vertices (position getting out of LYSO) are within 2 mm
- Also, timing cut is applied for tracks & converter energy deposit
 - Tracks: Grouped when timing & vertex are both consistent
 - Converter hit: E_{dep} counted when hit timing ∈ [-200 ns, 200 ns] from track
 → Pileup hits on converter result in high-energy tail
- RMD $-\gamma$ of > 10 keV are mixed in this work
 - Mixing rate: Branching ratio with that $\operatorname{cut} \times \operatorname{Muon}$ stopping rate

Signal spectrum at different rate

23

• aa

 $p_{e-} + p_{e+} + E_{dep}$ (truth) 200 keV smeared

Signal spectrum at different rate

 $p_{e-} + p_{e+} + E_{dep}$ (truth) 200 keV smeared

2e10 stopping rate

2e11 stopping rate

24

• aa

Discussion about pileup

- Impact of pileup with soft RMD- γ
 - Limited impact at $O(10^9/s)$ stopping
 - Impacts start to appear at $O(10^{10}/s)$
 - Clearly worsen spectrum at $O(10^{11}/s)$
- Today, I will present sensitivity only up to 10^9 / s stopping
 - Up to this point, we do not have to care about E_{γ} PDF change
 - If we want to discuss higher stopping rate, change in E_{γ} PDF should be incorporated

Technical information

- Event mixing is implemented with Gaudi
 - <u>https://gaudi-framework.readthedocs.io/en/latest/user_guide.html</u>
 - Development initiated for ATLAS, LHCb
- Use of Gaudi in our simulation
 - We just use algorithm switching feature (Implement algorithm ourself, which can be switched by runtime configuration file)
 - But, not use built-in reconstruction algorithm, etc

<u>Outline</u>

1. Signal simulation

- Review of past simulation
- Inputs for sensitivity calculation
- 2. BG photon simulation
 - Configuration of BG-photon simulation & spectrum
- 3. Event mixing: Performance at high rate
- 4. Environmental material: Impact on spectrum & efficiency
- 5. Preliminary sensitivity calculation

Our concern about material

- Concerns about conversion in front of LYSO
 - 1. Conversion may happen at GEM detector for TPC readout
 - 2. Or at mechanical support structure for LYSO
- ightarrow Trying to understand the impact on energy spectrum & efficiency

Case study with TPC-like material

- With gap b/w TPC material & converter, no impact on spectrum
 - Because tracks are discarded by position consistency cut
 - Just results in inefficiency when converted on TPC
 - (Copper implemented in this case study)

Case with support-like material

- Simulated with additional material attached to converter
 - Increase in the very long tail, though impact is limited on the main peak

Efficiency breakdown for materialized layer 31

- Gap b/w material & converter changes tracking-based cut
- But, little impact on final energy-based cut

	Layer0	Layer1 1.5 cm gap	Layer0	Layer1 attached
All events	1000000 total		1000000 total	
Tracking cut	79182	<u>58665</u>	79484	<u>70457</u>
ΔE <100 keV	25596	17552	25629	17590
E _{smeared} in SR (52.2 – 53.4)	34146	23545	34064	23432

Our learnings here (though it is obvious once noticed):

- For spectrum study, we care only about mechanical support
- Other materials may only reduce the detection efficiency

<u>Outline</u>

1. Signal simulation

- Review of past simulation
- Inputs for sensitivity calculation
- 2. BG photon simulation
 - Configuration of BG-photon simulation & spectrum
- 3. Event mixing: Performance at high rate
- 4. Environmental material: Impact on spectrum & efficiency
- 5. Preliminary sensitivity calculation

MEG II analysis in a nutshell

- Extended un-binned fit to estimate N_{sig} $\frac{e^{-(N_{sig}+N_{RMD}+N_{Acc})}}{N_{obs}!} \prod_{i=1}^{N_{obs}} \left(N_{sig}S(\vec{x_i}|X_{TGT}, \vec{q_i}) + N_{RMD}R(\vec{x_i}|\vec{q_i})) + N_{Acc}A(\vec{x_i}|\vec{q_i})) \right)$
 - List of observables: $E_e, E_{\gamma}, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma}$ are essentially important
- To get branching ratio, normalize N_{sig} by k
 - $Br(\mu \rightarrow e\gamma) = N_{sig}/k$
 - k estimation by counting Michel positrons (and cross-checked by counting RMD samples)

Fit range in MEG II

- $|t_{e\gamma}| < 500 \, \mathrm{ps}$
- $\left| heta_{e\gamma}
 ight| < 40$ mrad, $\left| \phi_{e\gamma}
 ight| < 40$ mrad
- $52.2 < E_e < 53.5$ MeV
- $48 < E_{\gamma} < 58 \text{ MeV}$

 $\rightarrow N_{Acc}$ is the number in this range (This is NOT counting analysis)

Configuration for sensitivity study

- Software: Re-use of that for MEG
 - With only corrections for PDF parameters (i.e. resolution, spectrum, etc.)
- PDFs: Only E_{γ} PDF has been modified from MEG II so far
 - *E_e*, time, and angle distribution is assumed to be the same as MEG II (This clearly needs to be updated to be more realistic...To be discussed later)
 - E_{γ} PDF: Just used the spectrum presented earlier today (i.e. Naïve smearing with 200 keV is adopted)
 - Fit range is changed only for E_{γ} : 48 < E_{γ} < 58 MeV \rightarrow 52.2 < E_{γ} < 53.4 MeV
- Sensitivity definition in MEG
 - Median of upper limits among pseudo-experiments with zero signal

Approach to estimate statistics

- N_{Acc} relies on experience in MEG II
 - But, need to correct for the change in fit range for E_{γ}
 - $\frac{N_{Acc}}{k \cdot R_{\mu}} \sim 7.5 \times 10^{-19}$ for $48 < E_{\gamma} < 58$ $(N_{Acc} \propto R_{\mu}^2$, but one of R_{μ} already absorbed in k, which is $k = R_{\mu} \epsilon_{eff}$)
 - For 52.2 < E_{γ} < 53.4 MeV, estimated to be $\frac{N_{Acc}}{k \cdot R_{\mu}} \sim 9.2 \times 10^{-21} (N_{Acc} \propto \delta E_{\gamma}^2)$
- k: Normalization factor for $Br(\mu \rightarrow e\gamma) = N_{sig}/k$
 - $k = R_{\mu} \cdot T_{DAQ} \cdot \Omega_{geom} \cdot \epsilon_{e} \cdot \epsilon_{\gamma} \cdot \epsilon_{trg} \cdot \epsilon_{sel}$
 - $\Omega_{geom} = 0.85$: $|\cos \theta| < 0.85$ and 2π for ϕ (was 11% for MEG II)
 - $\epsilon_e = 0.6$ (same efficiency as MEG II at 4e7)
 - $\epsilon_{\gamma} = 0.1$ (c.f. single-layer converter gives 3.2% in 52.2 < E_{γ} < 53.4 after smearing)
 - T_{DAQ} : 10⁷ sec/year

Estimated statistics

- Normalization vs beam rate
 - $k = R_{\mu} \times 5.1 \times 10^5$ / year
 - So, at 2×10^8 (10⁹) beam intensity, $k = 1 \times 10^{14}$ (5×10¹⁴) / year
- N_{Acc} at 2×10⁸ (10⁹)

•
$$\frac{N_{Acc}}{k \cdot R_{\mu}} \sim 9.2 \times 10^{-21}$$

- $N_{Acc} = 184 (4600) / \text{year}$
- Interpretable results at different rate
 - Above shows an example for $2 \times 10^8 \& 10^9$
 - But, different rates can be similarly calculated once we obtain N_{sig}^{sens} vs N_{Acc} plot
 - In this way, not difficult to interpret with different efficiency assumptions

Evaluate sensitivity to N_{sig} , Not sensitivity to branch

$$N_{sig}^{sens}$$
 vs N_{acc} calculation

Summary & Prospects

- Presented status of simulation works
 - Signal simulation with some new knowledge
 - Introduction of BG photon simulation
 - Introduction of event-mixing (pileup)
 - First look at material effects around converter
 - Sensitivity estimation
- Important studies/inputs to be more realistic
 - Pair tracker: Resolution for pairs & p_T cut assumption (5 MeV selected arbitrarily)
 - Active converter: E_{dep} resolution \rightarrow Plan to include results of LYSO measurement
 - Positron performance (just MEG II performance is now assumed now)
 - Position distribution of muon decay (so far, only simulated muon decays at the origin)

Discussions towards strategy input

- Inputs to the community needed by Feb/Mar next year
 - What will we claim? (Will we include sensitivity, etc?)
 - How much sophistication will be desired with our simulation?
 - And how much can we do in reality?
- Time scale for our studies
 - To run from GEANT4 to sensitivity, at least one month would be necessary (And, of course, there are MEG II works as well)
 - By Jan, we aim to get some results from beam test data collected this year
 - What about tracker? Can we include tracker simulation in this time scale?
 - And what about positron resolution?: $\sigma_{t_e}, \sigma_{p_e}, \sigma_{\Theta_e}, \sigma_{x_e}$, etc.
 - Target? Beam profile?

<u>Backup</u>

Generated RMD kinematics

hE

41

• 100 keV cut on E_{γ}

Fit region for sensitivity study

- Modeling: Working on the same framework for MEG II
 - Signal modeled with "ExpGaus": Gaussian + exponential low-energy tail
 - BG modeling based on MC spectrum + additional Gaussian smearing

