Simulation study for optimizing the performance of a photon pair-spectrometer

12. Dec 2024 Rei Sakakibara

Outline

- 1. The overall setup of the simulation
- 2. Optimization of the converter design
- 3. Possibility of angle measurement of γ
- 4. θ_{γ} dependence of the signal efficiency

1. The overall setups and signal selection

Geometry

- One converter layer (without tracker)
- Distance from the beam axis: 20 cm
- 2 T uniform magnetic field along *z* direction
- Converter thickness thinner in outer segmen.
 - In order to make the effective thickness for the γ to be uniform

Signals

- Photon particle gun from the origin
- Monochromatic energy of 52.8 MeV

Definition of "efficient event"

- Usually, multiple electron tracks are found in one event
 - Mainly from the ionization (including Bhabha/Møller scattering)
 - \rightarrow Need to select one e^{\pm} pair from the conversion
- So, pair-created e^+e^- track is selected as following
 - First, group the tracks are grouped according to their distance (2mm) and time difference (15 ns) of leaving the converter
 - The group is counted as a candidate if it contains only one electron and one positron
- Next, the energy of γ is reconstructed from the pair
 - $E_{\gamma} = E_{e^+} + E_{e^-} + E_{dep}$ E_{dep} = total energy deposition in the cell
 - If 52.7 MeV < E_{γ} < 52.9 MeV , count as efficient

ionization

2. Optimization of the converter design

Consideration of the cell size

 Cell size is important to reduce 'boomerang' events and to obtain a good energy spectrum

Comparison of different segmentation

- Investigated signal efficiency in several converter cell size
- Finer segment improves the efficiency
- efficiency depends strongly on ϕ segment

Converter Thickness

- Increase with thickness ... Conversion probability
- Decrease with thickness
 - Events with trackable pair e^+e^- ...Low energy tracks cannot leave a thick converter
 - Events with good reconstructed energy. ... Energy escape by bremsstrahlung

3. Angle measurement of γ

Possibility of angle cut

• The angle of the gamma can be estimated in two ways: (i) Direction of $\vec{r}_{conv} - \vec{r}_{e^+}$...used in MEG II (ii) Direction of $\vec{p}_{e^+} + \vec{p}_{e^-}$...becomes possible with pair spectrometer

BG rejection with angle cut

- Injected RMD γ from various positions $(\vec{r}_{BG\gamma})$
- Assuming that positron vertex is $\vec{r}_{e^+} = (0,0,0)$, applied cut on $\cos \Delta \theta$
- Investigated rejection efficiency depending on the relative position of γ emission to positron vertex

Effect of angle cut on the signal spectrum

- If we apply a too strict cut, signal efficiency will drop
 - Because of the limited angle resolution
 - When $\cos \Delta \theta$ threshold is set to 0.99, signal efficiency decreases to ~ 75 %
 - Almost 100 % until $\cos \Delta \theta = 0.9$

Angle resolution depending on thickness

- In terms of the signal efficiency, 3mm thickness had the best performance
- However, this may change if we think about angle measurement
 - The angle resolution is worsened with a thicker converter
 - Thinner converter may be better to maximize the sensitivity

4. Efficiency dependence on θ_{γ}

Efficiency depending on photon injection angle

- Simulation of signal gamma with various injection angle θ_{γ}
- This is mainly caused by higher boomerang probability in smaller θ_{γ}
 - Signal efficiency drops dramatically in small θ_{γ}
 - Conversion probability is almost constant

Boomerang event in outer cells

• Small θ_{γ}

12. Nov 2024

- \rightarrow Small transverse momentum,
- \rightarrow Small curvature of helical trajectory
- \rightarrow Higher probability of entering into the same cell

Finer segmentation in outer converter may be needed

Summary & Prospects

Converter thickness

- Should be thinner in larger |z| region of the detector
- Need to consider following things:
 - 1. Maximization of the signal efficiency
 - ...3 mm is optimal in terms of maximizing the signal efficiency
 - 2. Angle resolution
 - ... thinner converter is better. Important for the reduction of the background.
 - 3. Timing & energy resolution
 - ...time resolution measured in the last beam test was

36 ps(1.5 mm) and 27 ps(3.0 mm)

Converter segmentation

- $5 \text{ mm} \times 50 \text{ mm}$ / cell had almost maximum efficiency \rightarrow used in beam test
- In larger |z|, transverse momentum is small and thus higher probability of boomerang events
 - → May need finer segmentation in this region