Development of Active Converter for Pair Spectrometer MIP Electron Beam Test at KEK 2024

Fumihito IKEDA Future μ → eγ Meeting 2024-12-12

LYSO Bar as Active Converter Prototype MIP Electron Beam Test at KEK (2023)

Purpose: Energy and timing performance evaluation

Require pair spectrometer to $\Delta E/E < 0.4\%$ at 52.8 MeV && $\Delta t < 30$ ps

→ Require 1 segment of active converter to Np.e. > 670p.e. (t = 3 mm) && Δt < 40 ps for 1MIP

Note: 670p.e. ignoring tracker energy res. && the minimum number required from photo-electron statistics

Reported by Sakakibara-san, "R&D on an active photon converter" at last meeting 2nd Oct.

Basic requirements have already been achived, but there are things that have yet to be done....

- Simultaneous measurement of energy and timing
- Fine position/angle scan

LYSO Bar as Active Converter Prototype MIP Electron Beam Test at KEK (2024) Purpose: Energy and timing performance evaluation

- Upgrade from 2023 beam test
 - Simultaneous readout with high-gain (timing) and low-gain (energy)
 - Use high-gain waveforms for time-picking by leading-edge
 - Use low-gain waveforms for charge information
 - Position and angle scans with finer steps
 - VETO-ing multi-particle events (generated upstream)
 - Misjudge energy deposited in LYSO (and affects time resolution)

3x5x50 mm LYSO + 3x3 mm MPPC x3 in series, 4 GSPS @WDB

PF-AR Test Beam Line@KEK

T.Honda et al., PASJ2021 MOP049 (2021), "DESIGN OF THE GeV RANGE TEST BEAM LINE AT THE PF-AR"

Beam profile exmaple with PF-AR 6.5GeV && TBL 3GeV https://wiki.kek.jp/display/artbl/AR+Test+Beam+Line+Home

- Same as 2023 beam test
- Beam time = 24th Nov. 5th Dec.
- MIP electron beam (Beam momentum ~ 2, 3 or 5 GeV/c during our beamtime)
- Beam rate ~ 3 kHz at 3 GeV/c with the entire beam profile

SiPMs

Newly designed readout boards for better quality

Impedance matching, Better S/N, Better frequency characteristics, Smaller gaps between SiPMs

2023 board

output & +HV S14160-3050HS Hamamatsu **3x3 m²** / 50 um pitch **x3 in series** connection Also used in 2023 beam test

https://www.onsemi.com/pub/Collateral/AND9782-D.PDF

Standard output for low-gain on WDB (energy) Fast output for high-gain on WDB (timing)

3x5x50 mm LYSO with 3x3 mm MPPCs

3x5x50 mm LYSO with 6x6 mm MPPC

MICROFJ-40035-TSV-TR1 Onsemi 4x4 mm² / 35 um pitch

Fast output for timing measurements

3x5x50 mm LYSO with 4x4 mm SiPM

Biasing & Signal Dividing Baord for MPPCs

Data

		3x5x50 mm³ 3x3 mm² MPPC	3x5x50 mm ³ 6x6 mm ² MPPC	3x5x50 mm³ 4x4 mm² SiPM	1.5x5x50 mm³ 6x6 mm³ MPPC
Beam on	Vop scan	ہ 1 V step	ہ 1 V step	ہ 1 V step	x Same Vop as 3x5x50 mm
	Position scan w/ optimized Vop	ہ 2.5 mm step	o 5.0 mm step	o 2.5 mm step	ہ 2.5 mm step
	Angle scan w/ optimized Vop	ہ 10° step	ہ 10° step	Х	ہ 10° step
Beam off	Self-radiation daq	Х	0	Х	0
	Noise daq w/ acc. trig.	0	0	0	0
	Dark daq w/ periodic trig.	0	0	0	0

Preliminary Results Compared to 2023 3x5x50 m³ LYSO + 3x3 m⁴ MPPC x3 in series

2023 Beam Test

2024 Beam Test

Readout high-gain= 100 low-gain = 1 Walk is corrected using the charge of the low-gain waveform

→ Roughly uniform across the entire region with good time res. (Discrepancies in behavior near the center are not yet understood.) $\frac{8}{8}$

Items to be Analysed

- Energy
 - Uniformity of light yield vs. beam position
 - Comparison of light yield
 - vs. ingection angle, vs. LYSO thickness, vs. SiPM type
 - Estimation of absolute value of deposited energy by camparing charge with MC sim.
 - To calibrate, compare LYSO self-rad. charge with its spectrum to convert Np.e. → Energy Source dependence of LYSO light output (i.e., MIP, few MeV e-/e+, self-rad.) needs to be understood
 - Effect of using TOT of high-gain ch instead of charge of low-gain ch on energy res.
 - If only high-gain waveform is sufficient, the number of chs can be 1/2
- Timing
 - Uniformity of time resolution vs. beam position
 - Comparison of time resolution
 - vs. injection angle, vs. LYSO thickness, vs. SiPM type
 - Consistency of the time res. when using TC as time ref. and when using time diff. between left and right
 - Investigation of tail components in time diff. distribution
 - Effect of using TOT of high-gain ch instead of charge of low-gain ch for walk correction on time res.
 - Noise reduction by waveform analysis for better time res.
- Other
 - Estimation of hit pos. using chage ratio or time diff. between the two sides

Summary & Prospect

- Active converter using LYSO bar + SiPM is under development
- MIP electron beam test in 2023 had already shown that energy and timing performance requirment to 1 segment of active converter could be achieved
- MIP electron beam test in 2024 were newly conducted to further detail energy and timing performance
 - Simultaneous high-gain (timing) and low-gain (energy) readouts were performed
 - Preliminary result show good time res. of ~ 25-30 ps across the entire bar region
- Detailed analyses of energy and time resolution are planned
 - For energy performance,
 - Comparison of light yield under various conditions (pos., angle, LYSO thickness, SiPM type)
 - Estimation of absolute value of deposited energy by comparison with simulation
 - For timing perfomance,
 - Comparison of time res. under various conditions (pos., angle, LYSO thickness, SiPM type)
 - Seek further time res. by improving waveform analysis