Measuring magnetic fields with Cesium for the n2EDM experiment

Μ

LTPHD Seminar Lea Segner

a non-zero neutron electric dipole moment d_n would cause the • neutron spin to precess in an electric field \overrightarrow{E} with frequency:

$$\hbar |\overrightarrow{\omega}| = 2 \frac{d_n E}{d_n E}$$

a non-zero neutron electric dipole moment d_n would cause the ulletneutron spin to precess in an electric field \vec{E} with frequency:

$$\hbar |\overrightarrow{\omega}| = 2 \frac{d_n E}{d_n E}$$

The n2EDM experiment is built to measure the neutron \bullet precession frequency ω **BUT**

 $\omega \approx 7 n Hz$ -> not realistically measurable (1 precession = months or years)

 \overrightarrow{E}

a non-zero neutron electric dipole moment d_n would cause the \bullet neutron spin to precess in an electric field \vec{E} with frequency:

$$\hbar |\overrightarrow{\omega}| = 2 \frac{d_n E}{d_n}$$

The n2EDM experiment is built to measure the neutron \bullet precession frequency ω **BUT**

 $\omega \approx 7 n Hz$ -> not realistically measurable (1 precession = months or years)

• Solution: Add magnetic field \vec{B}

$$\hbar\omega = g\mu_n \mathbf{B} - 2 \, \mathbf{d}_n E$$

 \overrightarrow{E} R

- Trick: Measure two configurations
- \overrightarrow{B} and \overrightarrow{E} parallel

$$hf_{\uparrow\uparrow} = g\mu_n B - 2 \, d_n E$$

•
$$\overrightarrow{B}$$
 and \overrightarrow{E} antiparallel

$$hf_{\uparrow\downarrow} = g\mu_n \mathbf{B} + 2 \, \mathbf{d}_n \mathbf{E}$$

$$= h(f_{\uparrow\uparrow} - f_{\uparrow\downarrow}) = -4d_n E + g\mu_n (F_{\bullet})$$

$$d_n = \frac{h}{4E}(f_{\uparrow\downarrow} - f_{\uparrow\uparrow})$$

- Trick: Measure two configurations
- \overrightarrow{B} and \overrightarrow{E} parallel

$$hf_{\uparrow\uparrow} = g\mu_n B - 2 \, d_n E$$

•
$$\overrightarrow{B}$$
 and \overrightarrow{E} antiparallel

$$hf_{\uparrow\downarrow} = g\mu_n \mathbf{B} + 2 \, \mathbf{d}_n \mathbf{E}$$

$$= h(f_{\uparrow\uparrow} - f_{\uparrow\downarrow}) = -4d_n E + g\mu_n (F_{B}) ?$$

$$d_n = \frac{h}{4E}(f_{\uparrow\downarrow} - f_{\uparrow\uparrow})$$

many team members!

Active magnetic shield (AMS)

first layer of protection from outside magnetic fields

Magnetically shielded room (MSR)

second layer of protection from outside magnetic fields

Active magnetic shield (AMS)

first layer of protection from outside magnetic fields

Magnetically shielded room (MSR)

second layer of protection from outside magnetic fields

Gradiometer

measures every part that goes in the experiment for magnetic contamination

Active magnetic shield (AMS)

first layer of protection from outside magnetic fields

Magnetic field mapper

offline mapping of the magnetic field

Magnetically shielded room (MSR)

second layer of protection from outside magnetic fields

Gradiometer

measures every part that goes in the experiment for magnetic contamination

Active magnetic shield (AMS)

first layer of protection from outside magnetic fields

Mercury magnetometer

online magnetic field measurements

Magnetic field mapper

offline mapping of the magnetic field

Magnetically shielded room (MSR)

second layer of protection from outside magnetic fields

Gradiometer

measures every part that goes in the experiment for magnetic contamination

11

Active magnetic shield (AMS)

first layer of protection from outside magnetic fields

Mercury magnetometer

online magnetic field measurements

Magnetic field mapper

offline mapping of the magnetic field

Magnetically shielded room (MSR)

second layer of protection from outside magnetic fields

Gradiometer

measures every part that goes in the experiment for magnetic contamination

Cesium magnetometers

online magnetic field measurements (higher order gradients)

linearly polarised light

linearly polarised light

linearly polarised light

t = 0

=> Photons start being absorbed, laserlight at photodiode gets dimmer

linearly polarised light

=> Laserlight at photodiode gets brighter again

Photodiode would see:

$$I(t) = I_{offset} + A \sin(2\omega_{L}t + \phi)$$

$$= 4 \exp(2\theta_{L}t) + e^{-1/2\theta_{L}t}$$

Issue: with precession, we can't laser pump continuously

• Issue: with precession, we can't laser pump continuously

 Solution: pump with amplitude modulated laser Literally, turn laser on and off with angular frequency $2\omega_L$ (or close estimation)

- After pumping: alignment successfully created
 - Switch to lower laserpower and observe sinusoidal signal

- After pumping: alignment successfully created
- switch to lower laserpower and observe sinusoidal signal
- But: decoherence processes make us lose our alignment (wall collisions, decays to other states etc)

Thank you!

