RA-Quellendienst and E STING THE LOW ENERGY GERMANIUM DETECTORS (LEGE) CALBE CANBERRA 11

SUIATNOD

RA-QI

CANBERKA

SETTING UP/ PARAMETERS

- Set the gain of the Intelligent Preamplifier at its maximum option: x10
- <u>Trapezoid filter Parameters</u>

LEGe 1				
Trapezoid Parameters	Tau (ns)	Gap	Peaking	
Used	49.19	300	2600	
Manufacturer		200	1800	

	LEO	Ge 2	
Trapezoid Parameters	Tau (ns)	Gap	Peaking
Used	48.96	250	2100
Manufacturer		200	1800

TAU PARAMETER

• Taking long traces with 25000 buffer length

GAP AND PEAKING

Resolution LEGe1

• Running the trapezoid filter with Michaels Trapezoidal Optimization code.

Resolution LEGe2

GAP AND PEAKING

• Choosing gap at 300 for LEGe1 and 250 for LEGE2.

Resolution LEGe1

Resolution LEGe2

GAP AND PEAKING

• Fixing the Gap we study the minimum resolution for the Peak parameter

SPECTRA

• Using three sources at the same time: Fe-55, Co-57 and Am-241

RESOLUTION

LEGe 1			LEGe 2				
Isotopes	Fe-55	Am-241	Co-57	Isotopes	Fe-55	Am-241	Co-57
Energy (keV)	5.9	59.54	122	Energy (keV)	5.9	59.54	122
Calculated (eV)	235	377	517	Calculated (eV)	235	400	542
Manufacturer (eV)	220	-	525	Manufacturer (eV)	220	-	525

RESOLUTION

EFFICIENCY

Calculated intrinsic efficiency, considering the X-ray attenuation for Be window and plastic support around sources ~ 1 mm.

 $\epsilon = \frac{Counts}{Activity * Time * Yield * \Omega * Attenuation}$

EFFICIENCY

Calculated intrinsic efficiency, considering the X-ray attenuation for Be window and plastic support around sources ~ 1 mm.

DISCUSSION TOPIC: THE PEAKING NORMALIZATION

• When we removed at the BankDecoder.cpp the peaking normalization from trigger.energy we got a much better resolution, especially for Fe-55 source

120	
151	<pre>>>>>>//trigger.energy>>>=>>(>(float)>pdata[counter+13]>)>/>>peaking;</pre>
152	<pre>trigger.energy=(.(float).pdata[counter+13].);</pre>
153	

DISCUSSION TOPIC: THE PEAKING NORMALIZATION

• When we removed at the BankDecoder.cpp the peaking normalization from trigger.energy we got a much better resolution, especially for Fe-55 source ProjectionX of biny=5 [y=4.5..5.5] LEGe1
ProjectionX of biny=5 [y=4.5..5.5] LEGe1

Peaking normalization: FWHM(eV): 0.314

No peaking normalization: FWHM(eV): 0.228