

Update 28/02

Michael Heines

Theory progress

- QED from Paul: Only ⁴¹K left
- Konstantin is working on k and $\alpha \rightarrow I$ will do a mudirac test after this
- Misha finished his nucleon polarization \rightarrow Uncertainty treatment agreed upon
- Igor is wrapping up his nuclear polarization \rightarrow Uncertainty treatment agreed upon
- Natalia is checking 1s and 2s electron screening
- Wouter and Pepijn are giving me charge distributions for V_2

QED from Paul

QED contributions

Z	Α		RMS	J total	Nb. Conf.	Eigenv. #	E	(Coul+VP11)	E(Magnetic)_	E(Retardat.)	E(Ret>w2)_	E(Self.En.)_	E(S.E_FNS)	E(WeltScr)	not used	not used	E(VP_had11)_	E(El.Den.VP)	E(VacP_13) E	
	19	39	3.4006		1	1	1	-255429.3718	0.0000	0.0000	0.0000	-1.0737	0.2583	0.0000	0.0000	0.0000	-0.0069	0.0000	1.0518	
	19	39	3.4006		1	1	1	-968222.4933	0.0000	0.0000	0.0000	300.8085	-106.4934	0.0000	0.0000	0.0000	-9.2211	0.0000	5.0209	
	19	39	3.4023		1	1	1	-255429.3044	0.0000	0.0000	0.0000	-1.0737	0.2585	5 0.0000	0.0000	0.0000	-0.0069	0.0000	1.0518	
	19	39	3.4023		1	1	1	-968178.6914	0.0000	0.0000	0.0000	300.8085	-106.5477	0.0000	0.0000	0.0000	-9.2182	0.0000	5.0206	
	19	39	3.4040		1	1	1	-255429.2369	0.0000	0.0000	0.0000	-1.0737	0.2588	0.0000	0.0000	0.0000	-0.0069	0.0000	1.0518	
	19	39	3.4040		1	1	1	-968134.8843	0.0000	0.0000	0.0000	300.8085	-106.6019	0.0000	0.0000	0.0000	-9.2153	0.0000	5.0202	
	19	39	3.4057	1	1	1	1	-255429.1694	0.0000	0.0000	0.0000	-1.0737	0.2590	0.0000	0.0000	0.0000	-0.0069	0.0000	1.0518	
	19	39	3.4057	1	1	1	1	-968091.0718	0.0000	0.0000	0.0000	300.8085	-106.6561	0.0000	0.0000	0.0000	-9.2124	0.0000	5.0199	
	19	39	3.4074		1	1	1	-255429.1018	0.0000	0.0000	0.0000	-1.0737	0.2592	0.0000	0.0000	0.0000	-0.0069	0.0000	1.0518	
	19	39	3.4074		1	1	1	-968047.2543	0.0000	0.0000	0.0000	300.8085	-106.7102	0.0000	0.0000	0.0000	-9.2096	0.0000	5.0196	
	19	39	3.4091		1	1	1	-255429.0342	0.0000	0.0000	0.0000	-1.0737	0.2595	5 0.0000	0.0000	0.0000	-0.0069	0.0000	1.0518	
	19	39	3.4091		1	1	1	-968003.4316	0.0000	0.0000	0.0000	300.8085	-106.7644	0.0000	0.0000	0.0000	-9.2067	0.0000	5.0192	
	19	39	3.4109)	1	1	1	-255428.9625	0.0000	0.0000	0.0000	-1.0737	0.2597	7 0.0000	0.0000	0.0000	-0.0069	0.0000	1.0518	
	19	39	3.4109)	1	1	1	-967957.0215	0.0000	0.0000	0.0000	300.8085	-106.8217	0.0000	0.0000	0.0000	-9.2037	0.0000	5.0189	
	19	39	3.4126	i	1	1	1	-255428.8947	0.0000	0.0000	0.0000	-1.0737	0.2600	0.0000	0.0000	0.0000	-0.0069	0.0000	1.0518	
	19	39	3.4126	i	1	1	1	-967913.1870	0.0000	0.0000	0.0000	300.8085	-106.8758	0.0000	0.0000	0.0000	-9.2008	0.0000	5.0185	
	19	39	3.4143		1	1	1	-255428.8269	0.0000	0.0000	0.0000	-1.0737	0.2602	0.0000	0.0000	0.0000	-0.0069	0.0000	1.0518	
	19	39	3.4143		1	1	1	-967869.3430	0.0000	0.0000	0.0000	300.8085	-106.9300	0.0000	0.0000	0.0000	-9.1979	0.0000	5.0182	
							1		1			ſ	1							

Only term with significant radius sensitivity

Spread with radius ~ 1eV

What to do

• QED from Paul: Transition energy as function of c

$$\rho(r) = \frac{\rho_0}{1 + \exp\left[4\ln 3\left(\frac{r-c}{2.3\,fm}\right)\right]}$$

- Add NP (constant on top) and recoil correction (almost constant)
- Calculate Barrett radius for all c:
 - Cutoff radius for integral?
 - Step size in r for Riemann sum?
- What order polynomial to fit with?

Cutoff radius

- Charge distribution drops of fast, but:
 - r^2 in Jacobian
 - r^2 for rms / $r^{k \approx 2.1}$ for Barrett
- How far is far enough?
 - 1e-7 precision at Max = 15 fm
 - Complete crash around 20 fm
 - Proceeded with 25 fm

Coarseness in r

Riemann sums \rightarrow How small is small enough?

 0 → 25 fm with 1e-4 fm spacing (~10-20 seconds)

 0 → 25 fm with 1e-5 fm spacing (~2 minutes)

Coarseness in r

Riemann sums \rightarrow How small is small enough?

 0 → 25 fm with 1e-5 fm spacing (few minutes)

 0 → 25 fm with 1e-6 fm spacing (~20-30 mins)

Decision

- Using 1e-6 fm steps
- < 0.05 eV deviation in CI</p>
- Precision:
 - Exp = ~15 eV
 - NP = ~40 eV

What about differences?

- Isotope shifts better than absolute energies
- NP on difference better than absolute values
- Calculate the isotope shift as function of Barrett radius difference
- Mostly linear, some weird additional trends

What is it? Do we care?

- $R_{k\alpha,1}$ not completely decoupled from $\Delta R_{k\alpha}$
- Minor shift in fit for different $R_{k\alpha,1}$
- Options:
 - 2D fit constraining $R_{k\alpha,1}$ to previous extraction

• Ignore
$$\rightarrow \sigma_{exp} > 5 \ eV; \sigma_{NP} \approx 10 \ eV$$

Accounting for $R_{k\alpha}$

Checked different models. Best model is

 ΔE

 $= b_0 + b_1 \Delta R_{k\alpha} + b_2 \Delta R_{k\alpha}$ $+ b_3 R_{k\alpha,1} \Delta R_{k\alpha} + b_4 R_{k\alpha,1}$

• Residual reduced to ~50 meV!

Drumroll...

 39 K $R_{k\alpha}$: Literature: 4.4077(16)[18] fm Literature E + our theory: 4.4075(16)[?] fm Our 2p1s: 4.4091(7)[?] fm Our 3p1s: 4.4083(8)[?] fm Our 4p1s: 4.4102(8)[?] fm Our average: 4.4092(6)[?] fm $\chi^2_{\nu} = 1.61 \ (p \approx 0.2)$

Radii of Cl

Radius	Value	σ_{E}	σ_{NP}	σ_{V_2}	σ_{Tot}
R (³⁵ Cl)	3.3358	0.0005	0.0020	0.0041	0.0065
R (³⁷ Cl)	3.3463	0.0008	0.0020	0.0041	0.0068
R (³⁷ Cl) - R (³⁵ Cl)	0.0113	0.0006	0.0007	0.0013	0.0026
$\delta \langle r^2 \rangle$	0.0755	0.0039	0.0049	0.0086	0.0175

Literature:

- R (${}^{35}CI$) = 3.388(15) $\rightarrow \sim 3.5\sigma$ too high (2.3x larger error)
- R (³⁷Cl) = 3.384(15) \rightarrow ~2.5 σ too high (2.2x larger error)

Radii of Cl

Radius	Value	σ_{E}	σ_{NP}	σ_{V_2}	σ_{Tot}	
R (³⁵ Cl)	3.3358	0.0005	0.0020	0.0041	0.0065	
R (³⁷ Cl)	3.3463	0.0008	0.0020	0.0041	0.0068	
R (³⁷ Cl) - R (³⁵ Cl)	0.0113	0.0006	0.0007	0.0013	0.0026	Assuming 95
$\delta \langle r^2 \rangle$	0.0755	0.0039	0.0049	0.0086	0.0175	V2 correlation
					X10 im	provement ature

Literature:

- R (${}^{35}CI$) = 3.388(15) $\rightarrow \sim 3.5\sigma$ too high (2.3x larger error)
- R (³⁷Cl) = 3.384(15) \rightarrow ~2.5 σ too high (2.2x larger error)

Do those preliminary radii make sense

V_2 from DFT nuclear theory

V_2 from DFT nuclear theory

• For now: some test cases

 $\Delta V_2 = V_2(Exp) - V_2(DFT)$

Very good agreement! Equivalent to high q scattering experiment?

Isotope (measurement)	∆V₂(BSkG2) (1e-4)	∆V₂ (BSkG3) (1e-4)	∆V₂ (BSkG4) (1e-4)	δV ₂ (Exp) (1e-4)	
⁴⁰ Ar	-7.7	-3.4	-2.5	15	
⁴⁰ Ca (Si73)	-12.6	-7.9	-7.8	8.2	
⁴⁰ Ca (Em83b)	4.4	9.1	9.1	8.2	Differences better
⁴⁸ Ca (Em83b)	4.0	9.9	9.4	8.7	\int than absolutes
³⁰ Si (Mi82+)	-8.9	-3.5	-3.1	16	

