# RA-Quellendienst and E STING THE LOW ENERGY GERMANIUM DETECTORS (LEGE) CALBE CANBERRA 11

SUIATNOD

RA-QI

CANBERKA

# SETTING UP/ PARAMETERS

- Set the gain of the Intelligent Preamplifier at its maximum option: x10
- <u>Trapezoid filter Parameters</u>

| LEGe 1                  |          |     |         |  |  |  |
|-------------------------|----------|-----|---------|--|--|--|
| Trapezoid<br>Parameters | Tau (ns) | Gap | Peaking |  |  |  |
| Used                    | 49.19    | 300 | 2600    |  |  |  |
| Manufacturer            |          | 200 | 1800    |  |  |  |

| LEGe 2                  |          |     |         |  |  |  |
|-------------------------|----------|-----|---------|--|--|--|
| Trapezoid<br>Parameters | Tau (ns) | Gap | Peaking |  |  |  |
| Used                    | 48.96    | 250 | 2100    |  |  |  |
| Manufacturer            |          | 200 | 1800    |  |  |  |

# TAU PARAMETER

• Taking long traces with 25000 buffer length



# GAP AND PEAKING

**Resolution LEGe1** 

• Running the trapezoid filter with Michaels Trapezoidal Optimization code.



Resolution LEGe2

# **GAP AND PEAKING**

• Choosing gap at 300 for LEGe1 and 250 for LEGE2.

**Resolution LEGe1** 



**Resolution LEGe2** 

# GAP AND PEAKING

• Fixing the Gap we study the minimum resolution for the Peak parameter



# SPECTRA

• Using three sources at the same time: Fe-55, Co-57 and Am-241





# **RESOLUTION PROBLEM SOLVED**

<u>Reminder</u> We observed bad resolution especially at low energies:

#### Solution

| Source | Calculated<br>FWHM (eV) | Manufacturer<br>FWHM (eV) |  |  |
|--------|-------------------------|---------------------------|--|--|
| Fe-55  | 320                     | 220                       |  |  |

In the case of low energies (Fe-55) electronic noise is dominant and by subtracting the energy with the ٠ baseline correction (HitObjects.h) we double count this electronic noise (error propagation)

//float GetEnergyADC\_BLR() {return sis3316trigger->energy - baselineCorrection;} // Here removing the baseline correction!!!!! 222 223

float GetEnergyADC\_BLR() {return sis3316trigger->energy ;}

- For higher energies (Co-57 and Am-241) electronic noise is not so dominant so we kept the baseline ٠ correction for the MAW filter
- > That's why, as a temporary solution, we removed the baseline correction of the MAW filter only for the low energy, Fe-55 source

**<u>Conclusion</u>**: The double counting of the electronic noise from the baseline correction affected the resolution and it was particularly obvious at low energies (Fe-55)

# FUTURE ENDEAVOR

Create baseline correction plots of MAW vs RAW (ADC)



\* Development of a new method to perform muonic atom spectroscopy with microgram targets, Skawran PhD Thesis





# RESOLUTION

| LEGe 1               |       |        | LEGe 2 |                      |       |        |       |
|----------------------|-------|--------|--------|----------------------|-------|--------|-------|
| Isotopes             | Fe-55 | Am-241 | Co-57  | Isotopes             | Fe-55 | Am-241 | Co-57 |
| Energy (keV)         | 5.9   | 59.54  | 122    | Energy (keV)         | 5.9   | 59.54  | 122   |
| Calculated<br>(eV)   | 235   | 423    | 564    | Calculated<br>(eV)   | 235   | 423    | 564   |
| Manufacturer<br>(eV) | 220   | -      | 525    | Manufacturer<br>(eV) | 220   | -      | 525   |

#### RESOLUTION



# EFFICIENCY

Calculated intrinsic efficiency, considering the X-ray attenuation for Be window and plastic support around sources  $\sim 1$ mm.

 $\epsilon = \frac{Counts}{Activity * Time * Yield * \Omega * Attenuation}$ 

# EFFICIENCY

Calculated intrinsic efficiency, considering the X-ray attenuation for Be window and plastic support around sources  $\sim 1$ mm.

