Neutron Lifetime Puzzle

Contribution ID: 7 Type: invited

Experimental limits on an excited neutron state as an explanation of the beam-bottle neutron lifetime discrepancy.

Saturday 13 September 2025 14:10 (20 minutes)

Koch and Hummel[1] suggest a new solution to the neutron lifetime enigma[2]. The neutron lifetime enigma arises from the 4.4 standard deviation difference between the lifetime measured for bottled neutrons[3] and measurements of lifetime from a beam of cold neutrons[4]. Koch and Hummel point out the beam experiments measure the decay rate of neutrons very close in time to their source whereas the bottle measurement use neutrons ~1000 s after their production. They postulate the existence of an excited state of the neutron, n*, that has a longer β -decay lifetime than the ground state, n, and that a transition could occur between these two states by γ -ray emission with a decay time shorter than the holding time used for bottle lifetime measurements. Here, we will present an analysis of the UCN $_{\tau}$ data aimed a searching for an explanation of this difference using the model proposed by Koch and Hummel

Acknowledgments

The authors would like to thank Dr. Ben Koch for his comments on the paper. This work is supported by the LANL LDRD program; the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Awards No. DE-FG02-ER41042, No. DE-AC52-06NA25396, No. DE-AC05-00OR2272, and No. 89233218CNA000001 under proposal LANLEDM; NSF Grants No. 1614545, No. 1914133, No. 1506459, No. 1553861, No. 1812340, No. 1714461, No. 2110898, No. 1913789, and No. 2209521; and NIST precision measurements grant.

- 1. Koch, B. and F. Hummel, Exciting hint toward the solution of the neutron lifetime puzzle. Physical Review D, 2024. 110(7): p. 073004.
- 2. Greene, G.L. and P. Geltenbort, The neutron enigma. Scientific American, 2016. 314(4): p. 36-41.
- 3. Musedinovic, R., et al., Measurement of the free neutron lifetime in a magneto-gravitational trap with in situ detection. Physical Review C, 2025. 111(4): p. 045501.
- 4. Yue, A., et al., Improved determination of the neutron lifetime. Physical review letters, 2013. 111(22): p. 222501.

Authors: KOMIVES, A. (DePauw University); YOUNG, A. R. (North Carolina State University and 3Triangle Universities Nuclear Laboratory); SAUNDERS, A. (Oak Ridge National Laboratory); HOLLEY, A. T. (Tennessee Technological University); FILIPPONE, B. W. (California Institute of Technology); CUDE-WOOS, C. B. (Los Alamos National Laboratory); O'SHAUGHNESSY, C. M.; LIU, Chen-Yu (University of Illinois,); MORRIS, Christopher (LANL); SALVAT, D. J. (Indiana University); FRIES, E. (California Institute of Technology); SHARAPOV, E. I. (Joint Institute for Nuclear Research); GONZALEZ, F. M. (Oak Ridge National Laboratory); RAMSEY, J. C. (Oak Ridge National Laboratory); CHOI, J. H. (North Carolina State University); VANDERWERP, J. (Indiana University); HICKERSON, K. P. (California Institute of Technology); HAYEN, L. (North Carolina State University); BLOK-LAND, L. S. (Indiana University); BLATNIK, M. F. (Los Alamos National Laboratory); MAKELA, M. F. (Los Alamos National Laboratory); CALLAHAN, N.; GELTENBORT, P, (Institut Laue-Langevin); WALSTROM, P. (Los Alamos National Laboratory); MUSEDINOVIC, R. (North Carolina State University); PATTIE JR., R. W. (East Tennessee State University,); CLAYTON, S. (Los Alamos National Laboratory); ITO,

T. M. (Los Alamos National Laboratory); UHRICH, W. F. (Los Alamos National Laboratory); FOX, W. R. (Indiana University); TANG, Z. (Los Alamos National Laboratory); WANG, Z. (Los Alamos National Laboratory)

Presenter: MORRIS, Christopher (LANL)

Session Classification: Systematic Effects, Physics beyond the Standard Model