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The objective of the corrector coils

• The Objective:

• The constraints:

• Produce a smooth field profile that monotonically decreases away from a central dip.

• Have minimal power dissipation – heat extraction is complicated!

• Maintain a suitable longitudinal distance to field drop-off.

• The main and trim solenoids along with their cryostat already exist – no changes to that 

geometry.

• The main and trim solenoid current are constrained to the same ratio. 612.02/196.84 = 3.109

• Need to accommodate the detector!
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Coil parameters for solution
unchanged

Inner radius 50

Outer radius 60

Z from -5 to 5 

J=-1.6 A/mm2

Inner radius 40

Outer radius 70

Z from 270 to 300 

J=-1 A/mm2

Inner radius 40

Outer radius 60

Z from 220 to 250 

J=-0.75 A/mm2 3



Solution Bz profile
Bz profile along 
straight line 31.13 
mm from axis.

Blue line is main and 
trim solenoids at 
original currents 
only.

Red line is with new 
corrector design.
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Keeps roughly the 
same Z extent

Does not dip here, no secondary trap created, see next slide!

Much smoother than 

first corrector design, 

hopefully no reflection 
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Solution Bz profile – zoomed in
Bz profile along 
straight line 31.13 
mm from axis.

Blue line is main and 
trim solenoids at 
original currents 
only.

Red line is with new 
corrector design.
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Still (just) 
monotonically 
changing
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Solution Br profile
Br profile along 
straight line 31.13 
mm from axis.

Blue line is main and 
trim solenoids at 
original currents 
only.

Red line is with new 
corrector design.
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Coil windings

Need for vacuum compatibility makes coil winding tricky

• Needs to be able to reach 10-6 to 10-7 mbar.

• Trapped volumes in between turns cause outgassing– square profile wire better than 
round!

• Kapton dipped wire is ideal in vacuum but is hard to get hold of in square profile. 

• Heat transfer from inner turns relies on good thermal contact.

• Solution to all the above problems: use solid-core round wire and vacuum 
impregnate UHV epoxy between the turns of the coils!
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Windings plan
• Wind coils from Kapton coated copper wire with 2mm OD and 1.8mm conductor diameter 

(Kurt J Lesker part number FTAK18005).

• Inner coil = 20x30 mm, at 0.75 Amm-2 (assuming 100% packing factor), so 450 Ampere 
turns.
• 20x30 mm gives 10x15 grid = 150 Turns. Needed current 3 Amps.

• 1.8mm conductor diameter is 2.54 mm2, so 1.18 Amm-2

• Outer coil = 30x30 mm, at 1 Amm-2 (assuming 100% packing factor), so 900 Ampere 
turns.
• 30x30 mm gives 15x15 grid = 225 Turns. Needed current 4 Amps.

• 1.8mm conductor diameter is 2.54 mm2, so 1.57 Amm-2
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Total power load
• Vacuum makes it difficult to conduct heat away from the coils.

• Current densities below 2 Amm-2 will be acceptable in air, but need active heatsinking in vacuum. 

• Need to make sure heat conduction is directed away from the superconducting components.

• Estimated heat loads for examples on previous slides:

• Inner coil :
• Total length of wire estimated at 48 metres (± slight packing error).

• Need 3 Amps, 1.8mm conductor diameter is 2.54 mm2, so 1.18 Amm-2

• Assume copper ρ=1.724*10-8 Ωm , or σ = 58001000 S/m

• R=0.326 Ω, so P=~3W

• Outer coil :
• Total length of wire estimated at 78 metres (± slight packing error).

• Need 4 Amps, 1.8mm conductor diameter is 2.54 mm2, so 1.57 Amm-2

• Assume copper ρ=1.724*10-8 Ωm , or σ = 58001000 S/m

• R=0.53 Ω, so P=~8.5W
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Alex Bainbridge

Heat flow simulations
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• Heat flow modelling shows that filling the 
vacuum space between the turns of the 
coil is necessary to ensure heat flow into 
the holder.

• Leaving this space as vacuum results in 
poor heat conduction as expected.

• Steady state temperature peaks at 26 
degrees in outer coil.

• So- filling in the gaps between the turns 
with an epoxy of similar thermal 
conductivity to air is a good solution.

Vacuum impregnating UHV epoxy 
between the turns of the coils is the 
optimal solution – also removes trapped 
volumes and reduces outgassing.



8 K
67.3 oC

Cu Emissivity: 0.025 

11

Passive heat flow simulations show that heat will not conduct quickly enough out of the chamber via 

the support structure. Active cooling will be needed.

Heat flow simulations
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Coil mounting proposal

Central trap coil

Cooling tubes to connect

via Swagelock to 

feedthrough

Mounting to end flange

Aluminium holder structure

Aluminium Support rods

Positioned to 

accommodate detectors
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Coil mounting proposal
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Coil mounting proposal
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Coil mounting proposal

Cooling tube 

Square section conductor 

held by clamping between 

olders

Clamps



• A field solution is found: by having 2 corrector coils side and staggering their Ampere-turn values we can 

achieve a monotonically decreasing field with a central dip.

• The current solution fits into all physical constraints (that we know about) – Central coil holder edited and 

presented at meeting on 06/02/25 to resolve conflict between central coil holder and detector.

• Water-cooling of the coil holders is required.

• We plan to have coils wound and potted in vacuum epoxy by colleagues at the Rutherford Appleton 

Laboratory, UK.

• Wire has been procured. 

• Coil holder design was reviewed on at 30/01/25 and 06/02/25– should now be fully compatible with detectors. 

• Expected delivery of complete coils to PSI March/April.

Current status
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