Introduction and news Francesco Renga

Toward a baseline detector configuration

- Main missing items:
 - positron timing —> first thoughts about a scintillator-based solution
 - magnetic field configuration (constant vs. gradient)
 - target (multiple? active?)
 - a credible timeline

Toward a baseline detector configuration

- Main missing items:
 - positron timing
 - magnetic field configuration (constant vs. gradient)
 - target (multiple? active?)
 - a credible timeline

Beyond the baseline

Collection of random ideas from some informal discussions

- Alternative solutions for positron tracking:
 - gaseous detector (radial TPC with pad readout)
- Alternative solutions for positron timing:
 - Fast gaseous detectors (PICOSEC)

Possible interest from LIP (Lisbon)

 Low Gain Avalanche Diodes (LGAD)

Some expertise in Genova

Toward the definition of a timeline Some personal thoughts

- Constraints from our commitment to other experiments (MEG, Mu3e, muEDM, PIONEER...) to be considered
- An important milestone will be a proof of principle of resolutions achievable with the conversion technique:
 - e.g. CEX reaction with active converter
 + TPC angular sector in a O(1 T) magnet

- Single phase vs. staged approach:
 - e.g. would it make sense to perform a phase-1 experiment with a few to several 10⁷ μ /s (—> gaseous tracker à la MEG could be used) but ~ 4 π acceptance?

News

- We are going to submit a 2M€ grant request to the Italy Research Ministry
 - Principal investigator: Paolo Cattaneo
 - Project tailored on the expertise of the Italian groups (gaseous trackers + scintillator-based positron timing)
 - More details will be discussed by Paolo today

News

- Two documents for the European Strategy for Particle Physics are planned:
 - general document on muon cLFV experiments (MEG + Mu2e + COMET) -> will contain a short section on future $\mu \rightarrow e\gamma$
 - specific document about a future $\mu \rightarrow e\gamma$ experiment
- Deadline: March 31st, 2025

```
Future perspectives for \mu^+ \rightarrow e^+\gamma searches
The working group for future \mu^+ \rightarrow e^+\gamma experiments
11th February 2025
```

Abstract

1 Introduction

2

5

⁷ In the standard model (SM) of particle physics, charged lepton flavour-violating ⁸ (CLFV) processes are basically forbidden with only extremely small branching ra-⁹ tios (~10⁻⁵⁴ [1]) when accounting for non-zero neutrino mass differences and mixing ¹⁰ angles. Therefore, such decays are free from SM physics backgrounds and a positive ¹¹ signal would be unambiguous evidence for physics beyond the SM. Several SM exten-¹² sions predict CLFV decays at measurable rates, and the channel $\mu^+ \rightarrow e^+\gamma$ is particu-¹³ larly sensitive to new physics. Reviews of the theoretical expectations and experimental ¹⁴ status are provided in [1,2].

2 Current experimental status

- 16 Editor: W. Ootani
- **3** Beam availability
- 18 Editor: G. Dal Maso
- 4 Experimental approach
- 20 4.1 Expertimental concept
- 21 Editor: F. Renga
- 22 4.2 Positron tracking
- 23 Editor: A. Schoening
- 4 4.3 Calorimeter experiments
- 25 Editor: A. Papa
- 4.4 Conversion experiments
- 27 Editor: W. Ootani, F. Renga
- 5 Sensitivity
- 29 Editor: A. Oya
- **30 6 Schedule**
- 31 Editor: W. Ootani